LINEAR SYSTEMS, MATRICES, AND VECTORS
Now that I've been teaching Linear Algebra for a few years, I thought it would be great to integrate the more advanced topics such as vector spaces, the Euclidean dot product, and matrix operations early on in our class, instead of hurrying to fit everything in late in the course. So...hold on to your seats...we're in for a bumpy ride!
1.1 Linear Systems and Matrices

Learning Objectives

1. Use back-substitution and Gaussian elimination to solve a system of linear equations
2. Determine whether a system of linear equations is consistent or inconsistent
3. Find a parametric representation of a solution set
4. Write an augmented or coefficient matrix from a system of linear equations
5. Determine the size of a matrix

Let's Do Our Math Stretches!

1. Solve the following systems of linear equations

$$
\left.\begin{array}{rl}
-x+8 y=3 & R 1 \\
6 x=12 & R 2
\end{array}\right]\left\{\begin{array}{l}
-x+8 y=3 \rightarrow y=\frac{5}{8}\left\{\begin{array}{l}
\text { consistent system } \\
\text { with independent } \\
-x+8 y=3 \\
6 x+0 y=12
\end{array} \rightarrow \frac{1}{6} R 2 \rightarrow \begin{array}{l}
\text { equations }
\end{array}\right. \\
\text { eq }
\end{array}\right.
$$

b.

$$
\begin{aligned}
& 3 x+y-z=15 \rightarrow x=6 \\
& 2 y+4 z=0 \rightarrow y=-2 \\
& z=1
\end{aligned}
$$

$$
\{(6,-2,1)\}
$$

corsisident system w/ independent equations

A linear equation in n variables \square $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$ has the form

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}=b
$$

The coefficients $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are real numbers, and the constant term b is real number. The number a_{1} is the \qquad leading \qquad coefficient .om \qquad x_{1} is the leading variable.
*Linear equations have no products or \qquad rats of variables and no variables involved in transcendental functions.

Example 1: Give an example of a linear equation in three variables.

$$
4 x_{1}+0 x_{2}+3 x_{3}=10 \rightarrow 4 x_{1}+3 x_{3}=10
$$

DEFINITION OF SOLUTIONS AND SOLUTION SETS

A solution of a linear equation in n variables is a \qquad Slowance of n real numbers $S_{1}, S_{2}, S_{3}, \ldots, S_{n}$ arranged to satisfy the equation when you substitute the values

$$
x_{1}=s_{1}, x_{2}=s_{2}, x_{3}=s_{3}, \ldots, x_{n}=s_{n}
$$

into the equation. The set of all solutions of a linear equation is called its \qquad Solution set and when you have found this set, you have \qquad Satisfied the equation. To describe the entire solution set of a linear equation, use a parametric representation.

Example 2: Solve the linear equation.

$$
x_{1}+x_{2}=10 \rightarrow \mathbf{X}_{\mathbf{1}}=10-\mathbf{x}_{2}
$$

$$
\text { Let } x_{2}=t, x_{1}=10-t
$$

$\left\{\begin{array}{l}\text { describe the } \\ (10-t, t): \\ \text { Sat }\end{array}\right.$ form of the solution (s)
explanation of the formed of any parameters and loo limitations

Example 3: Solve the linear equation.

$$
\begin{aligned}
& x_{x_{1}-x_{2}+5 x_{2}=-1}^{1} \\
& \left.x_{1}=2_{2}-5 x_{3}-1\right) \\
& \text { Let } x_{2}=t, x_{3}=s \\
& x_{1}=\frac{1}{2}(t-5 s-1)
\end{aligned}
$$

SYSTEMS OF LINEAR EQUATIONS IN n VARIABLES
A system of linear equations in n variables is a set of m equations, each of which is linear in the same n variables.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \begin{array}{cccc}
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}= & b_{3} \\
\vdots & \vdots & \vdots & \vdots
\end{array} \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

A solution of a system of linear equations is a \qquad Sequence of numbers $S_{1}, S_{2}, s_{3}, \ldots, S_{n}$ that is a solution of each of the linear equations in the system

Example 4: Graph the following linear systems and determine the solutions), if a solution exists.
a.

$$
\begin{aligned}
x-y & =8 \\
x+y & =2 \\
2 x & =10 \\
y & =5 \\
y & =-3
\end{aligned}
$$

b.

$$
\frac{x-y=8}{x-y=2}
$$

c.

$$
\begin{aligned}
& 2 x-2 y=16 \rightarrow x-y=8 \\
& 3 x-3 y=24 \rightarrow x-y=8 \\
& x-y=8 \rightarrow x=y+8 \rightarrow x=t+8
\end{aligned}
$$

let $y=t$

$$
\left\{\begin{array}{c}
\{t+8, t): t \in R\} \\
\text { consistent system }
\end{array}\right.
$$

with dependent equations

collowitely
many

For a system of linear equations, precisely one of the following is true. The system has exactly one solution. (consistent system). The system has infinitely many solutions (_consistent system) The system has solution (in(ansistentsystem).

TYPES OF SOLUTIONS

2 Equations, 2 Variables
What did we learn from the last example?
Inconsistent:

parallel lines

Consistent:

cross at one point or collinear

3 Equations, 3 Variables
Inconsistent
Parallel Planes Intersecting Two at a Time (1) or Intersecting Two at a Time (2)
Consistent
Dependent: Linear Intersection Planar Intersection
Independent:

[^0]

Each of the following operations on a system of linear equations produces an
system. Add_ two equations. an equation by a \qquad nonzero constant.
Add. \qquad multiple of an equation to \qquad another equation.

The evil plan is to get the system into \qquad row-echelon form.

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} & =b_{1} \\
a_{22} x_{2}+a_{23} x_{3} & =b_{2} \\
a_{33} x_{3} & =b_{3}
\end{aligned}
$$

DEFINITION OF A MATRIX
If m and n are positive integers, an $m \times n$ matrix (read mbyn) mantis is a rectangular array

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

in which each end_, $a_{i j}$, of the matrix is a number. An $m \times n$ matrix has m rows and n columns. Matrices are usually denoted by \qquad capital letters.
*The entry $a_{i j}$ is located in the i th row and the j th column. The index i is called the _row
\qquad because it identifies the row in which the entry lies, and the index j is called the column \qquad index because it identifies the column in which the entry lies.
**A matrix with m rows and n columns is said to be of \qquad $m \times n$. When \qquad $m=n$, the matrix is called S quark of order na nd the entries $a_{1,} a_{2}, a_{3}, \ldots$, are called the -main diagonal entries.

1. Diagonal Matrices are square matrices with one's along the main diagonal and zeros elsewhere. The main diagonal goes from the top \qquad left corner to the bottom \qquad right corner.
2. Coefficient Matrices are formed using the coefficient go the variables in systems of linear equations.
3. Augmantedmatrices adjoin the coefficient matrix with the column matrix of constants.

Example 5: Consider the following system of linear equations.
$x_{1}-x_{2}+x_{3}=2$
$-x_{1}+3 x_{2}-2 x_{3}=8$
$2 x_{1}+x_{2}-x_{3}=1$
a. Find the coefficient matrix (matrix of

$$
A=\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 3 & -2 \\
2 & 1 & -1
\end{array}\right], \begin{array}{r}
\text { coefficients) and determine its size. } \\
3 \times 3
\end{array}
$$

$$
\begin{aligned}
B= & {\left[\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
-1 & 3 & -2 & 8 \\
2 & 1 & -1 & 1
\end{array}\right] } \\
\downarrow & \\
B 1+R 2 & \rightarrow R 2 \\
& {\left[\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & 2 & -1 & 10 \\
2 & 1 & -1 & 1
\end{array}\right] }
\end{aligned}
$$

$$
\lambda B=[A \mid \vec{b}]
$$

b. Find the augmented matrix and determine its size.

$$
B=\left[\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
-1 & 3 & -2 & 8 \\
2 & 1 & -1 & 1
\end{array}\right], \begin{gathered}
\text { its size. } \\
\text { size } \\
3 \times 4
\end{gathered}
$$

$$
\left[\begin{array}{l}
-2 R 1+R 3 \rightarrow R 3 \\
{\left[\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & 2 & -1 & 10 \\
0 & 3 & -3 & -3
\end{array}\right]} \\
\frac{1}{3} R 3^{2} \rightarrow 3 \\
{\left[\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & 2 & -1 & 10 \\
0 & 1 & -1 & -1
\end{array}\right]}
\end{array}\right.
$$

$$
\vec{b}=\left[\begin{array}{l}
2 \\
8 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & -1 & 1 & 2 \\
0 & 2 & -1 & 10 \\
0 & 0 & -\frac{1}{2} & -6
\end{array}\right]} \\
& \begin{array}{r}
1 x_{1}-1 x_{2}+1 x_{3}=2 \\
2 x_{3}-1 x_{3}=10
\end{array} \\
& 2 x_{2}-1 x_{3}=10 \\
& -\frac{1}{2} x_{3}=-6
\end{aligned}
$$

$$
x_{3}=12, x_{2}=11, x_{1}=1 \quad\{(1,11,12)\}
$$

d. Check your result using Octave, which has the same commands as Matlab but is free - .
i. Go to the very bottom of the page and enter the augmented matrix. I named the augmented
matrix B. You use brackets to designate a matrix, use a \qquad between entries, and a semicolon \qquad between rows.

ii. After hitting "enter" the screen looks like this (you'll have a different command line number): octave:18> $B=\left[\begin{array}{llllllllll}1 & -1 & 1 & 2 ;-1 & -2 & 8 & 1 & -1 & 1\end{array}\right]$
$B=$

1	-1	1	2
-1	3	-2	8
2	1	-1	1

Now type in $\operatorname{rref}(\mathrm{B})$ to get the reduced row-echelon form of the augmented matrix:

iii. How should we interpret the results?

1.2 Gauss-Jordan Elimination

Learning Objectives

1. Use matrices and Gaussian elimination with back-substitution to solve a system of linear equations
2. Use matrices and Gauss-Jordan elimination to solve a system of linear equations
3. Solve a homogeneous system of linear equations
4. Fit a polynomial function to a set of data points
5. Set up and solve a system of equations to represent a network

Let's Do Our Math Stretches!

1. Interpret the following augmented matrices.
a.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 \\
0 & 0 & 5 \\
0 & 1 & 1
\end{array}\right] \rightarrow x_{1}=8, x_{2}=7, x_{3}=5
$$

b.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & -2 \\
0 & 1 & -21
\end{array}\right] \rightarrow \begin{array}{c}
x_{1}-x_{2} \\
x_{2}+33
\end{array}=-2 \rightarrow x_{1}=x_{2}-2=9-3 x_{3}} \\
& \text { Lot } x_{3}=t, x_{2}=11-3 t, x_{1}=9-3 t
\end{aligned}
$$

c.

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 4 & 3 \\
0 & 1 & 0 & 7 & 0
\end{array}\right]
$$

1.

\qquad two rows.
2. multiply a row by a \qquad constant.
3. Add a multiple of a row to another row.
4. Interchange (swap) any 2 rows.

Note: These operations also work for columns.
DEFINITION OF ROW-ECHELON FORM AND REDUCED ROW-ECHELON FORM
A matrix in row-echelon (ref) form has the following properties.
Any rows consisting entirely of \qquad occur at the bottom of the matrix. For each row that does not consist entirely of zeros, the first nonzero entry is \qquad (called a leading \qquad). For two successive nonzero rows, the leading 1 in the higher row is farther to the \qquad than the leading 1 in the lower row. A matrix (ref) in row-echelon form is in seduced row-echelon form when every column that has a leading 1 has zeros in every position above and below its leading 1.

Example 1: Determine which of the following augmented matrices are in row-echelon (ref) form.
a.
$\left[\begin{array}{l|l}1 & -\frac{1}{2}\end{array}\right]$
yo "
b.
$\left[\begin{array}{rrr|c}1 & -1 & 0 & 3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 12\end{array}\right]$
yeo-ref
but not ref
c.

$$
\left[\begin{array}{rrr|r}
1 & 1 & -1 & -8 \\
0 & 0 & 1 & 25 \\
0 & 1 & 15 & -3
\end{array}\right]
$$

no

GAUSS-JORDAN ELIMINATION

1. Write the augmented matrix of the system of linear equations.
2. Use elementary row operations to find an \qquad matrix in \qquad reduced row-echelon form. If this is not possible, write the equivalent system of equations and back substitute.
3. Interpret your results.

Example 2: Solve the system using Gauss-Jordan Elimination.
a.

$$
\begin{aligned}
& x_{1}+x_{2}-5 x_{3}=3 \\
& x_{1} \quad-2 x_{3}=1 \\
& 2 x_{1}-x_{2}-x_{3}=0 \\
& B=\left[\begin{array}{ccc|c}
1 & 1 & -5 & 3 \\
1 & 0 & -2 & 1 \\
2 & -1 & -1 & 0 \\
\downarrow
\end{array}\right] \\
& -R_{1}+R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{ccc}
1 & 1 & -9 \\
0 & - & 3 \\
2 & 3 & -2 \\
2 & -1 & -1 \\
& \downarrow & 0
\end{array}\right]} \\
& -2 R 1+R 3 \rightarrow R 3 \\
& {\left[\begin{array}{ccc|c}
1 & 1 & -5 & 3 \\
0 & -1 & -2 \\
0 & -3 & 9 & -6
\end{array}\right]} \\
& -3 R 2+R 3 \rightarrow R 3 \\
& {\left[\begin{array}{cc|c}
1 & -5 & 3 \\
0 & -1 & 3 \\
0 & 0 & 0 \\
0
\end{array}\right]} \\
& x_{1}+x_{2}-5 x_{3}=3 \\
& -x_{2}+3 x_{3}=-2 \\
& 0=0 \text { train } \\
& 0=0 \\
& x_{2}=3 x_{3}+2 \\
& x_{1}=3-\left(3 x_{3}+2\right)+5 x_{3} \\
& x_{1}=2 x_{3}+1=2 t+1 \\
& x_{2}=3 t+2 \\
& x_{3}=t \\
& \left\{\begin{array}{c}
2 t+1,3 t+2, t): t \in R\} \\
\text { consistent system }
\end{array}\right.
\end{aligned}
$$

b.

$$
\begin{aligned}
& \left.\begin{array}{rl}
5 x_{1}-3 x_{2}+2 x_{3} & =3 \\
2 x_{1}+4 x_{2}-x_{3} & =7 \\
x_{1}-11 x_{2}+4 x_{3}=3 \\
B & =\left[\begin{array}{rrr|r}
5 & -3 & 2 & 3 \\
2 & 4 & -1 & 7 \\
1 & -11 & 4 & 3
\end{array}\right] \\
-2 R_{1} & +5 R 2 \rightarrow R_{2} \\
{\left[\begin{array}{ccc|c}
5 & -3 & 2 & 3 \\
0 & 26 & -9 & 29 \\
1 & -11 & 4 & 3
\end{array}\right]} \\
-R 1+5 R 3 & \rightarrow R 3 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{c}
2 R 2+R 3 \rightarrow R 3 \\
{\left[\begin{array}{ccc|c}
5 & -3 & 2 & 3 \\
0 & 26 & -9 & 29 \\
0 & 0 & 0 & 10
\end{array}\right]} \\
\downarrow
\end{array}\right.
$$

$$
\begin{array}{r}
5 x_{1}-3 x_{2}+2 x_{3}=3 \\
26 x^{2}-9 x=29
\end{array}
$$

$$
26 x_{2}-9 x_{3}=29
$$

$$
0=70
$$

$\}$, an inconsistent system with independent equations.
DEFINITION OF HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS
Systems of equations in which each of the constant terms is zero are called
hamagen Rove A homogeneous system of m equations in n variables has the form
**Homogenous linear systems either have the \square trivial solution, or infinitely

He Trivial solution:

$$
x_{1}=x_{2}=\cdots=x_{n}=0
$$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots a_{2 n} x_{n}=0 \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots a_{3 n} x_{n}=0 \\
& a_{m m} \dot{x}_{1}+a_{m 2} \dot{x}_{2}+a_{m m} \dot{x}_{3}+\cdots a_{m m} x_{n}=0
\end{aligned}
$$

$x_{1} x_{2} x_{3} x_{4}$
Example 3: Solve the homogeneous linear system corresponding to the given coefficient matrix.
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$

$$
\left.A=\left[\begin{array}{llll}
1 & \vdots & 0 & 0 \\
1 & j & 0 & \vec{b} \\
0 & 1 & 1 & 0
\end{array}\right] \underset{b}{0} 0\right]
$$

x.

$$
=0
$$

$$
x_{2}+x_{3}=0
$$

THEORE 1.1: THE NUMBER OF SOLUTIONS OF A HOMOGENEOUS SYSTEM

POLYNOMIAL CURVE FITTING
Suppose n points in the $x y$-plane represent a collection of data and you are asked to find a Polynomial function of degree $n-1$ whose graph passes through the specified points. This is called \qquad sifting . If all x-coordinates are distinct, then there is precisely polynomial function of degree $n-1$ (or less) that fits the n points. To solve for the n _coefficients $p(x)$, anstitwtere each of the n points into the polynomial function and obtain n \qquad equations in Ω variables $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$.

$$
\begin{aligned}
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots a_{n-1} x_{1}^{n-1} & =y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}{ }^{2}+\cdots a_{n-1} x_{2}^{n-1} & =y_{2} \\
a_{0}+a_{1} x_{3}+a_{2} x_{3}^{2}+\cdots a_{n-1} x_{3}^{n-1} & =y_{3} \\
\vdots & \vdots \\
\vdots & \vdots \\
a_{0}+a_{1} x_{n}+a_{2} x_{n}^{2}+\cdots a_{n-1} x_{n}^{n-1} & =y_{n}
\end{aligned}
$$

Example 4: Determine the polynomial function whose graph passes through the points, and graph the polynomial function, showing the given points.
$(1,8),(3,26),(5,60)$
$n=3$ because we have 3 ordered pairs

$$
\begin{aligned}
& n-1=2 \\
& P(x)=a_{0}+a_{1} x+a_{2} x^{2} \\
& P(1)=8=a_{0}+a_{1}(1)+a_{2}(1)^{2}=a_{0}+a_{1}+a_{2} \\
& P(3)=26=a_{0}+a_{1}(3)+a_{2}(3)^{2}=a_{0}+3 a_{1}+9 a_{2} \\
& P(5)=60=a_{0}+a_{1}(5)+a_{2}(5)^{2}=a_{0}+5 a_{1}+25 a_{2} \\
& \left.\begin{array}{r}
-R 1+R^{3} \\
\downarrow \\
R 3
\end{array} \begin{array}{lll|l}
1 & 1 & 1 & 8 \\
0 & 1 & 4 & 9 \\
0 & 4 & 24 & 52
\end{array}\right] \\
& a_{0}+3 a_{1}+9 a_{2}=26 \\
& a_{0}+5 a_{1}+25 a_{2}=60 \\
& b=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 8 \\
1 & 3 & 9 & 20 \\
1 & 5 & 25 & 60
\end{array}\right] \\
& \downarrow \\
& -R 1 \text { +Rn } 7 R 2 \\
& {\left[\begin{array}{lll|l}
1 & 1 & 1 & 8 \\
0 & 2 & 8 & 18 \\
1 & 5 & 25 & 60
\end{array}\right] \ldots} \\
& {\left[\begin{array}{lll|l}
1 & 1 & 1 & 8 \\
0 & 1 & 4 & 9 \\
0 & 0 & 8 & 1
\end{array}\right]} \\
& a_{1}+a_{1}+a_{2}=8 \\
& a_{1}+4 a_{2}=9 \\
& 8 a_{2}=K \\
& a_{2}=2, a_{1}=1, a_{0}=5
\end{aligned}
$$

CREATED BY SHANNON MARTIN MYERS

$$
P(x)=5+x+2 x^{2}
$$

NETWORK ANALYSIS
Networks composed of \qquad and are used as models in fields like economics, traffic analysis, and electrical engineering. In an electrical network model. you use Kirchoff's Laws to find the system of equations.

Kirchoff's Laws

1. Junctions: All the current flowing into a junction must flow out of it.
2. Paths: The sum of the $I R$ terms, where I denotes \qquad and R denotes Pesisfance.jn any direction around a closed path is equal to the total voltage in the path in that direction.

Example 5: Determine the currents in the various branches of the electrical network. The units of current are amps and the units of resistance are ohms.

PATH : ABCDA
$1 I_{1}+2 I_{3}=9$
current
$I_{1}+I_{2}=I_{3}$

PATH: BCD

Example 6: The figure below shows the flow of traffic through a network of streets.

Solve this system for $x_{i}, i=1,2, \ldots, 5$.

$300=x_{2}+x_{3}+x_{5}$

$=400$

x,

$$
+x_{3}-x_{4}
$$

$$
x_{4}+x_{5}=180
$$

$$
+x_{5}=300
$$

Find the traffic flow when $x_{3}=0$ and $x_{5}=100$.

$$
\begin{aligned}
& x_{1}=100-0-100=600 \\
& x_{2}=300-0-100=200 \\
& x_{3}=0 \\
& x_{4}=100-100=0 \text { and } x_{5}=100
\end{aligned}
$$

Find the traffic flow when $x_{3}=x_{5}=100$.
$x_{1}=100-100-100=500$

$$
\begin{aligned}
& x_{1}=300-100-100=100 \\
& x_{2}=30
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{2}=300-100-100=100 \\
x_{4}=100-100=0 \text { and } x_{3}=x_{5}=100 \\
{\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{array}\right]
$$

$$
\begin{aligned}
& x_{1}=100-x_{3}-x_{5} \\
& x_{2}=300-x_{3}-x_{5} \\
& x_{4}=100-x_{5}
\end{aligned}
$$

1.3 The Vector Space R^{n}

Learning Objectives

1. Perform basic vector operations in R^{2} and represent them graphically
2. Perform basic vector operations in R^{n}
3. Write a vector as a linear combination of other vectors
4. Perform basic operations with column vectors
5. Determine whether one vector can be written as a linear combination of 2 or more vectors
6. Determine if a subset of R^{n} is a subspace of R^{n}

VECTORS IN THE PLANE
A vector is characterized by two quantities, \qquad length and \qquad direction , and is represented by a \qquad directed line segment . Geometrically, a \qquad vector in the plane_ is represented bra directed in segment witt is initial point at the origin and its Lecminadonomes $\left(x_{1}, x_{2}\right)$
\qquad
 when you're using a computer, but when you write them by hand you need to write an \qquad arrow) above the letter designating the vector.

The same ordered pair used to represent its terminal point also represents the
\qquad . That is, $\vec{x}=\left(x_{1}, x_{2}\right)$. . The coordinates x_{1} and x_{2} are called the Components of the vector \mathbf{x}. Two vectors in the plane $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ are equal if and only if \qquad $u_{1}=v_{1}$ and \qquad $u_{2}=v_{2}$. What do you think the zero vector is Tor $R^{2}, \vec{O}=(0,0)$ Howsout $R^{2}, \vec{O}=(0,0,0) R^{r}, \vec{O}=(0,0,0,0,0,0)$

Example 1: Use a directed line segment to represent the vector, and give the graphical representation of the vector operations.

c. $\mathbf{u}+\mathbf{v}$

IMPORTANT VECTOR SPACES
 = the set of real = the set of all ordered numbers = the set of all ordered $=$ the set of all orclered triples of real numbers. R
DEFINITION OF VECTOR ADDITION AND SCALAR MULTIPLICATION [R $\quad\left[{ }^{n}\right]$
Let $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\vec{V}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be vectors in R^{n}, and let $C \in R$ Then the sum of \vec{u} and \vec{v} is defined as the vector,$\vec{u}+\vec{v}=\left(u_{1}+u_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right)$ and the Scalar multiplication of \vec{M} by C is defined as the vector, $c \vec{r}=\left(\mathrm{Cu}_{1}, C u_{2}, \ldots,\left(u_{n}\right)\right.$.

THEOREM 1.2: PROPERTIES OF VECTOR ADDITION AND SCALAR MULTIPLICATION IN R^{n} Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in R^{n}, and let c and d be scalars. ADDITION:

1. $\mathbf{u}+\mathbf{v}$ is a vector in R^{n}.

$$
\begin{aligned}
& \text { Let } \vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \vec{v}=\left(v_{1}, v_{2}, \ldots, n_{n}\right) \\
& \vec{\omega}=\left(w_{1}, \omega_{2}, \ldots, \omega_{n}\right), v_{i}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \vec{\omega}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right), v_{i}, u_{i}, w_{i}, i=1, v_{2}, \ldots, n, v_{n} \\
& \quad \text { closure }
\end{aligned}
$$

2. $\mathbf{u}+\mathbf{v}=\vec{v}+\vec{u}$

Commutative property

$$
\begin{aligned}
& \text { Proof: } \\
& \vec{u}+\vec{v}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)+\left(v_{1}, v_{2}, \ldots, v_{n}\right) \\
&=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right) \text { defn. vector } t \\
&=\left(v_{1}+u_{1}, v_{2}+u_{2}, \ldots, v_{n}+u_{n}\right) \quad R \text { is common }(t) \\
&=\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\left(u_{1}, u_{2}, \ldots, u_{n}\right) \text { defn vect. }+
\end{aligned}
$$

3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\vec{u}+\vec{v})+\vec{w}$

Associative

$$
\Gamma^{\vec{v}}=\vec{v}+\stackrel{\rightharpoonup}{u} / /
$$

4. $\mathbf{u}+\mathbf{0}=\stackrel{\rightharpoonup}{u}$ additive \square identity property
5. $\mathbf{u}+(-\mathbf{u})=\overrightarrow{0}$ additive inverse property

SCALAR MULTIPLICATION:
6. $c u$ is a Vector in R^{n}.
7. $c(\mathbf{u}+\mathbf{v})=C \vec{u}+C \vec{v}$
closure
distributive property

$$
\begin{aligned}
& \text { Proof: } \\
& c(\vec{u}+\vec{v})=c\left[\left(u_{1}, u_{2}, \ldots, u_{n}\right)+\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right] \\
&=c\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right) \text { defnvec.t } \\
&=\left(c\left(u_{1}+v_{1}\right), c\left(u_{2}+v_{2}\right), \ldots, c\left(u_{n}+v_{n}\right)\right) \text { def vec.scal.mult. } \\
&=\left(c u_{1}+c v_{1}, c u_{2}+c v_{2}, \ldots, c u_{n}+c v_{n}\right) \text { R distributes }
\end{aligned}
$$

gee page below...
8. $(c+d) \mathbf{u}=c \vec{u}+d \vec{u}$ distributive property
9. $c(d \mathbf{u})=(c d) \vec{u}$ associative property
10.1(u) $\overrightarrow{\mathbf{u}}$ multiplicative identity \quad property

$$
\begin{aligned}
& =\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right)+\left(c v_{1}, c v_{2}, \ldots, c v_{n}\right) \text { defn of vec. } t \\
& =c\left(u_{1}, u_{2}, \ldots, u_{n}\right)+c\left(v_{1}, v_{2}, \ldots, v_{n}\right) \text { defn of vec. scal.mult } \\
& =c \vec{u}+c \vec{v} / /
\end{aligned}
$$

Example 2: Solve for \mathbf{w}, where $\mathbf{u}=(2,-1,3,4)$, and $\mathbf{v}=(-1,8,0,3)$.

$$
\begin{aligned}
& \text { a. } \mathbf{w}+\mathbf{u}=-\mathbf{v} \\
& \vec{\omega}+\vec{u}-\vec{u}=-\vec{v} \\
& \vec{\omega}+\vec{u} \\
& \vec{\omega}+(-\vec{u})=-1(\vec{v}+\vec{u}) \\
& \vec{\omega}+\overrightarrow{0}=-[(-1,8,0,3)+(2,-1,3,4)] \\
& \vec{\omega}=-(1,7,3,7) \\
& \vec{\omega}=(-1,-7,-3,-7)
\end{aligned}
$$

DEFINITION OF COLUMN VECTOR ADDITION AND SCALAR MULTIPLICATION

Let $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$, and c be scalars.

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right] \text { and } c\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
c u_{1} \\
c u_{2} \\
\vdots \\
c u_{n}
\end{array}\right]
$$

Example 3: Find the following, given that $\mathbf{u}=\left[\begin{array}{c}-3 \\ 18 \\ -1 \\ 31 \\ -9\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{c}-2 \\ 41 \\ -6 \\ -3 \\ 15\end{array}\right]$.

Let \mathbf{v} be a vector in R^{n}, and let c be a scalar. Then the following properties are true.

1. The additive identity is unique

Proof:

$$
\text { Suppose } \exists \vec{u} \in R^{n} \ni \vec{v}+\vec{u}=\vec{v} \text {. }
$$

$$
\begin{aligned}
&(\vec{v}+\vec{u})+(-\vec{v})=\vec{v}+(-\vec{v}) \\
&\vec{u}+\vec{u}+(-\vec{u})]=\overrightarrow{0} \\
& \vec{u}+\overrightarrow{0}=\overrightarrow{0} \\
& \vec{u}=\overrightarrow{0}
\end{aligned}
$$

\therefore The additive identity is unique. "
2. The \qquad additive inverse is unique
3. $0 \mathbf{v}=$ \qquad $\stackrel{\rightharpoonup}{0}$
4. $c \mathbf{0}=$ $\overrightarrow{0}$
5. If $c \mathbf{v}=\mathbf{0}$, then \qquad $c=0$ or \qquad $\vec{v}=\overrightarrow{0}$
6. $-(-\mathbf{v})=\vec{v}$ \qquad
LINEAR COMBINATIONS OF VECTORS
An important type of problem in linear algebra involves writing one vector as the Sun of scalar \qquad multiples of other vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. The vector $\overrightarrow{\boldsymbol{x}}$,
$\overrightarrow{\mathbf{x}}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$ is called a linear combination of the vectors $\mathbf{v}_{1}, v_{2}, \ldots, v_{n}$.
Example 4: If possible, write \mathbf{u} as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}, where $\mathbf{v}_{1}=(1,2)$ and $\mathbf{v}_{2}=(-1,3)$.

$$
\begin{aligned}
& \text { CREATE B B SHANNON MARTIN MYERS } \\
& c_{1}-c_{2}=0 \rightarrow c_{1}=\frac{3}{5} \\
& 2 c_{1}+3 c_{2}=3 \rightarrow 2 c_{2}+3 c_{2}=3 \rightarrow 5 c_{2}=3 \rightarrow c_{2}=\frac{3}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}^{\text {Let's check }} \rightarrow(0,3)=\frac{3}{5}(1,2)+\frac{3}{5}(-1,3) \quad \text { per pere } u=(1,-1) \text { pert } \\
& \left((0,3)=c_{1}(1,2)+c_{2}(-1,3)\right. \\
& \left\{\begin{array}{l}
(0,3)=\left(c_{1}, 2 c_{1}\right)+\left(-c_{2}, 3 c_{2}\right) \\
(0,3)=\left(c_{1}-c_{2}, 2 c_{1}+3 c_{2}\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \begin{array}{l}
\vec{u}=(1,-1), \vec{v}_{1}=(1,2), \vec{v}_{2}=(-1,3) \\
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{u} \\
c_{1}(1,2)+c_{2}(-1,3)=(1,-1) \\
c_{1}-c_{2}=1 \\
2 c_{2}+3 c_{2}=-1
\end{array} \\
& B=\left[\begin{array}{cc|c}
1 & -1 & 1 \\
2 & 3 & -1
\end{array}\right] \quad \frac{2}{5}(1,2)-\frac{3}{5}(-1,3)=(1,-1) \\
& -2 R 1+R 2 \rightarrow R 2 \\
& {\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 5 & -3
\end{array}\right] \quad S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}}
\end{aligned}
$$

$$
5 R 1+R 2 \rightarrow R 1
$$

If you can obtain any

$$
\left[\begin{array}{cc|c}
5 & 0 & 2 \\
0 & 5 & -3
\end{array}\right]
$$ vector in R^{2} using a linear combination

$$
\downarrow
$$ of the vectors in S,

$$
\left[\begin{array}{cc|c}
1 & 0 & 2 / 5 \\
0 & 1 & -3 / 5
\end{array}\right]
$$ the S is a spanning set of R^{2}.

$$
c_{1}=\frac{2}{5}
$$

$$
c_{2}=-\frac{3}{5}
$$

Example 5: If possible, write \mathbf{u} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}, where $\mathbf{v}_{1}=(1,3,5)$,

$$
\begin{aligned}
& \mathbf{v}_{2}=(2,-1,3) \text {, and } \mathbf{v}_{3}=(-3,2,-4) . \\
& \mathbf{u}=(-1,7,2) \\
& c_{1}(1,3,5)+c_{2}(2,-1,3)+c_{3}(-3,2,-4)=(-1,7,2) \\
& c_{1}+2 c_{2}-3 c_{3}=-1 \\
& 3 c_{1}-c_{2}+2 c_{3}=7 \\
& 5 c_{1}+3 c_{2}-4 c_{3}=2 \quad \text { inconsistent system }
\end{aligned}
$$

It is not passible to write \vec{u} as a linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
WHAT THE HECK DOES IT ALL MEAN??
Any vector space consists of \qquad 4 entities: a \qquad set of vectors a set of
\qquad scalars , and \qquad 2 operations. Currently, we are only exploring the vector spaces in \mathbb{R}^{n}. Let's think about the following subset of R^{2} :

$$
S=\left\{\left(x, \frac{1}{2} x\right): x \in \mathbb{R}\right\}
$$

Is the set S a vector space? Let's find out!

Let $\vec{u}=\left(u_{1}, \frac{1}{2} u_{1}\right), \vec{v}=\left(v_{1}, \frac{1}{2} v_{1}\right), \vec{w}=\left(w_{1}, \frac{1}{2} w_{1}\right)$, and $u_{1}, v_{1}, w_{1}, c, d \in R$.

1. Closure under addition.
\vec{u} and $\vec{v} \in S$.

$$
\begin{aligned}
\vec{u}+\vec{v} & =\left(u_{1}, \frac{1}{2} u_{1}\right)+\left(v_{1}, \frac{1}{2} v_{1}\right) \\
& =\left(u_{1}+v_{1}, \frac{1}{2} u_{1}+\frac{1}{2} v_{1}\right) \text { diff. rect.+ }
\end{aligned}
$$

$$
\boldsymbol{T}=\left(u_{1}+v_{1}, \frac{1}{2}\left(u_{1}+v_{0}\right)\right) \begin{aligned}
& \text { Risc } \\
& \text { dist }
\end{aligned}
$$ dist.

$$
\begin{aligned}
& \text { 2. Commutativity under addition. } \\
& \vec{u}+\vec{v}=\left(u_{1}, \frac{1}{2} u_{1}\right)+\left(w_{1}, \frac{1}{2} v_{0}\right)
\end{aligned}
$$

$$
t+\operatorname{man}_{t+} \rightarrow \vec{v}+\vec{u}
$$

$$
\begin{aligned}
& \text { 3. Associativity under addition. } \\
& \vec{u}+(\vec{v}+\vec{\omega})=\left(u_{1}, \frac{1}{2} u_{0}\right)+\left[\left(v_{1}, \frac{1}{2} v_{1}\right)+\left(\omega_{1}, \frac{1}{2} \omega_{1}\right)\right] \\
& =\left(u_{1}, \frac{1}{2} u_{1}\right)+\left(v_{1}+w_{1}, \frac{1}{2} v_{1}+\frac{1}{2} w_{1}\right) \text {-deon vert. } \\
& =\left(u_{1}+\left(v_{1}+w_{1}\right), \frac{1}{2} u_{1}+\left(\frac{1}{2} v_{1}+\frac{1}{2} w_{1}\right)\right)^{\prime} \\
& =\left(\left(u_{1}+v_{1}\right)+\omega_{1},\left(\frac{1}{2} u_{1}+\frac{1}{2} v_{1}\right)+\frac{1}{2} \omega_{1}\right) R \text { is assoc (}+ \text {) } \\
& =\left(u_{1}+v_{1}, \frac{1}{2} u_{1}+\frac{1}{2} v_{1}\right)+\left(\omega_{1}, \frac{1}{2} w_{1}\right) \text { deft sect }+ \\
& =\left[\left(u_{0}, \frac{1}{2} u_{1}\right)+\left(v_{1}, \frac{1}{2} v_{0}\right)\right]+\vec{w} \longrightarrow=\left(\vec{u}+\frac{1}{v}\right)+\vec{w} \\
& \text { 4. Additive identity. }
\end{aligned}
$$

$$
\begin{aligned}
\vec{u}+\overrightarrow{0} & =\left(u_{1}, \frac{1}{2} u_{1}\right)+\left(0, \frac{1}{2} \cdot 0\right) \\
& =\left(u_{1}+0, \frac{1}{2} u_{1}+0\right) \text { defer rect }+ \\
& =\left(u_{1}, \frac{1}{2} u_{1}\right) \text { add. identity prop for } R \\
& =\vec{u}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. Additive inverse. } \\
& \vec{u}+(-\vec{u})=\left(u_{1}, \frac{1}{2} u_{0}\right)+\left[-\left(u_{0}, \frac{1}{2} u_{1}\right)\right] \\
& =\left(u_{1}, \frac{1}{2} u_{1}\right)+\left(-u_{1},-\left(\frac{1}{2} u_{1}\right)\right) \text { deon }{ }^{\text {mescal. malt. }} \text {. } \\
& =\left(u_{1}+\left(-u_{1}\right), \frac{1}{2} u_{1}+\left(-\frac{1}{2} u_{1}\right)\right) \text { deft vect.t } \\
& \text { addinif } R=\left(0, \frac{1}{2}\left(u_{1}+\left(-u_{1}\right)\right)\right) \\
& =\left(0, \frac{1}{1} \cdot 0\right) \rightarrow 00 \\
& \text { 6. Closure under scalar multiplication. }
\end{aligned}
$$

$$
\begin{aligned}
c \vec{u} & =c\left(u_{1}, \frac{1}{2} u_{1}\right) \\
& =\left(c u_{1}, c\left(\frac{1}{2} u_{1}\right)\right) \text { defn rect. scal.matt. } \\
& =\left(c u_{1}, \frac{1}{2}\left(C u_{1}\right)\right) \text { R is comm }(x)
\end{aligned}
$$

Which $\in S$ //

$$
\text { 7. Distributivity under scalar multipication (2 vectors and 1 scalar. } \begin{aligned}
c(\vec{u}+\vec{v}) & =c\left[\left(u_{1}, \frac{1}{2} u_{1}\right)+\left(v_{1}, \frac{1}{2} v_{1}\right)\right] \\
& =c\left(u_{1}+v_{1}, \frac{1}{2} u_{1}+\frac{1}{2} v_{0}\right) \text { defn vect. }+ \\
& =\left(c\left(u_{1}+v_{1}\right), c\left(\frac{1}{2} u_{1}+\frac{1}{2} v_{1}\right)\right) \text { defn vect scal. mult. } \\
& =\left(c u_{1}+c v_{1}, c\left(\frac{1}{2} u_{1}\right)+c\left(\frac{1}{2} v_{1}\right)\right) R \text { is dist. } \\
& =\left(c u_{1}, c\left(\frac{1}{2} u_{1}\right)\right)+\left(c v_{1}, c\left(\frac{1}{2} v_{1}\right)\right) \text { defn vect }+ \\
& =c\left(u_{1}, \frac{1}{2} u_{1}\right)+c\left(v_{1}, \frac{1}{2} v_{1}\right) \text { defn vect. Scal. mult } \\
& =c \vec{u}+c \vec{v} /
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. Distributivity under scalar multiplication (2 scalars and } 1 \text { vector). } \\
& \begin{aligned}
(c+d) \vec{u} & =(c+d)\left(u_{1}, \frac{1}{2} u_{1}\right) \\
& =\left((c+d) u_{1},(c+d)\left(\frac{1}{2} u_{1}\right)\right) \text { defn vect scal. mult } \\
& =\left(c u_{1}+d u_{1}, c\left(\frac{1}{2} u_{1}\right)+d\left(\frac{1}{2} u_{1}\right)\right) R \text { is dist. } \\
& =\left(c u_{1}, c\left(\frac{1}{2} u_{1}\right)\right)+\left(d u_{1}, d\left(\frac{1}{2} u_{1}\right)\right) \text { defn. vect }+ \\
& =c\left(u_{1}, \frac{1}{2} u_{1}\right)+d\left(u_{1}, \frac{1}{2} u_{1}\right) \text { defn. vect. scal. mult. } \\
& =c \vec{u}+d \vec{u} / /
\end{aligned}
\end{aligned}
$$

9. Associativity under scalar multiplication.

$$
\begin{aligned}
c(d \vec{u}) & =c\left[d\left(u_{1}, \frac{1}{2} u_{1}\right)\right] \\
& =c\left(d u_{1}, d\left(\frac{1}{2} u_{1}\right)\right)<d e f n \text { vect. scal. melt. } \\
& =\left(c\left(d u_{1}\right), c\left[d\left(\frac{1}{2} u_{1}\right)\right]\right) \\
& =\left((c d) u_{1},(c d)\left(\frac{1}{2} u_{1}\right)\right) \text { Ris assoc (x) } \\
& =(c d)\left(u_{1}, \frac{1}{2} u_{1}\right) \text { defer vector scal.mult. } \\
& =(c d) \vec{u}
\end{aligned}
$$

10. Scalar multiplicative identity.

$$
\begin{aligned}
1 \vec{u} & =1\left(u_{1}, \frac{1}{2} u_{1}\right) \\
& =\left(1\left(u_{1}\right), 1\left(\frac{1}{2} u_{1}\right)\right) \text { defriect. scalar molt } \\
& =\left(u_{1},\left(1 \cdot \frac{-1}{2}\right) u_{1}\right) \text { is associative } \\
& =\left(u_{1}, \frac{1}{2} u_{1}\right) \ll \text { is the multi. identity for } R \\
& =\vec{u} / \prime
\end{aligned}
$$

Conclusion?
$S=\left\{\left(x, \frac{1}{2} x\right): x \in R\right\}$ is a vector space ${ }^{\prime \prime}$

Example 6: Determine whether the set W is a vector space with the standard operations. Justify your answer.

$$
\begin{aligned}
W= & \left\{\left(x_{1}, x_{2}, 4\right): x_{1} \text { and } x_{2} \in \mathbb{R}\right\} \\
& \vec{u}=(1,2,4) \text { and } \vec{v}=(5,6,4) \in W
\end{aligned}
$$

$\vec{u}+\vec{v}=(6,8,8)$ \& W so W is not closed under addition. So ... NOT a vector space.

SUBSPACES
In many applications of linear algebra, vector spaces occur as a SUbSpace of larger spaces. A nonempty \qquad subset of a vector \qquad space is a subspace when it is a vector space with the \qquad same operations defined in the original vector space. Consider the following: 10 and $V=R^{2}$.

$W \subseteq R^{2}$,
W is nonempty

$$
\begin{aligned}
& \vec{u}=\left(0, u_{1}\right), \vec{v}=\left(0, v_{1}\right), c, u_{1}, v_{1} \in R . \\
& \vec{u}+\vec{v}=\left(0, u_{1}\right)+\left(0, v_{1}\right)
\end{aligned}
$$

$=\left(0, u_{1}+v_{1}\right) \in w$, so we haver closure under addition.

$$
\begin{aligned}
c \vec{u} & =c\left(0, u_{1}\right) \\
& =(c(0), c(u,)
\end{aligned}
$$

$=\left(0, c u_{1}\right) \in \omega$, so we have closure under cal. mult.

A nonempty subset W of a vector space V is called a subspace_ of V when $\mathbf{N}_{\text {_ }}$ is a vector space under the operations of addition and Scalar multiplication defined in V.

THEOREM 1.4: TEST FOR A SUBSPACE
If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following closure conditions hold.

1. If \mathbf{u} and \mathbf{v} are in W, then \qquad $\vec{u}+\vec{v}$ is in W.
2. If \mathbf{u} is in W and c is any scalar, then is in W.

Example 7: Verify that W is a subspace of V.
$W=\{(x, y, 2 x-3 y): x$ and $y \in \mathbb{R}\}$
$V=R^{3}$

1) $W \subseteq R^{3} J$
2) W is nonempty

$$
\begin{aligned}
& \text { Let } \vec{u}=\left(u_{1}, u_{2}, 2 u_{1}-3 u_{2}\right), \vec{v}=\left(v_{1}, v_{2}, 2 v_{1}-3 v_{2}\right), u_{1}, u_{2}, v_{1}, v_{2}, c \in R \\
& \text { 3) } \vec{u}+\vec{v}=\left(u_{1}, u_{2}, 2 u_{1}-3 u_{2}\right)+\left(v_{1}, v_{2}, 2 v_{1}-3 v_{2}\right) \\
&=\left(u_{1}+v_{1}, u_{2}+v_{2},\left(2 u_{1}-3 u_{2}\right)+\left(2 v_{1}-3 v_{2}\right)\right) \\
&=\left(u_{1}+v_{1}, u_{2}+v_{2}, 2 u_{1}+2 v_{1}+\left(-3 u_{2}-3 v_{2}\right)\right) \\
&=\left(u_{1}+v_{1}, u_{2}+v_{2}, 2\left(u_{1}+v_{1}\right)-3\left(u_{2}+v_{2}\right)\right) \in W V \\
&\text { 4) } \left.\begin{array}{rl}
c \vec{u} & =c\left(u_{1}, u_{2}, 2 u_{1}-3 u_{2}\right) \\
& =\left(c u_{1}, c u_{2}, c\left(2 u_{1}-3 u_{2}\right)\right) \\
& =\left(c u_{1}, c u_{2}, c\left(2 u_{1}\right)-c\left(3 u_{2}\right)\right) \quad\left(c u_{1}, c u_{2}, 2\left(c u_{1}\right)-3\left(c u_{2}\right)\right)
\end{array}\right] W \operatorname{lol}
\end{aligned}
$$ null set

THEOREM 1.5: THE INTERSECTION OF TWO SUBSPACES IS A SUBSPACE
If V and W are both subspaces of a vector space U, then the intersection of V and W, denoted by , is also a subspace of U.
1.4 Basis and Dimension of R^{n}

Learning Objectives

1. Determine if a set of vectors in R^{n} spans R^{n}.
2. Determine if a set of vectors in R^{n} is linearly independent
3. Determine if a set of vectors in R^{n} is a basis for R^{n}
4. Find standard bases for R^{n}
5. Determine the dimension of R^{n}

Let's do our math stretches!
If possible, write the vector $\mathbf{z}=(-4,-3,3)$ as a linear combination of the vectors in $S=\{(1,2,-2),(2,-1,1)\}$.

$$
\begin{aligned}
& \vec{z}=c_{1} \vec{r}_{1}+c_{2} \vec{v}_{2} \\
& (-4,-\overrightarrow{3}, 2)=c_{1}(1,2,-2)+c_{2}(2,-1,1) \\
& -4=c_{1}+2 c_{2} \\
& -3=2 c_{1}-c_{2} \\
& 3=-2 c_{1}+c_{2}
\end{aligned} \quad\left[\begin{array}{cc|c}
1 & 2 & -4 \\
2 & -1 & -3 \\
-2 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

DEFINITION OF LINEAR COMBINATION OF VECTORS IN A VECTOR SPACE
A vector v in a vector space V is called a \qquad combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$ in V when v can be written in the form $\vec{v}_{v}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{k} \vec{u}_{k}$ where $c_{1}, c_{2}, \ldots c_{k}$ are scalars, $\in R$

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a subset of a vector space V. The set S is called a Spanning set of V when every vector in V can be written as a \qquad linear combination of vectors in S.

Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ be any vector in R^{3}. So $u_{1}, u_{2}, u_{3} \in R$.

$$
\begin{aligned}
& c_{1} \stackrel{\rightharpoonup}{v}+c_{2} \vec{v}_{2}+c_{3} \stackrel{v}{3}^{2}=\vec{u} \\
& c_{1}(1,0,0)+c_{2}(0,1,0)+c_{3}(0,0,1)=\left(u_{1}, u_{2}, u_{3}\right) \\
& c_{1} \quad=u_{1} \\
& c_{2} \quad=u_{2} \\
& c_{3}=u_{3}
\end{aligned}
$$

$$
u_{1}(1,0,0)+u_{2}(0,1,0)+u_{3}(0,0,1)=\left(u_{1}, u_{2}, \mu_{3}\right)
$$

So S spans R^{3}.

$$
\text { Let } \vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \ni u_{i}, i=1,2,3 \in R
$$

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\vec{u}
$$

$$
\begin{aligned}
& c_{1}(1,2,3)+c_{2}(0,1,2)+c_{3}(-1,1,1)=\left(u_{1}, u_{2}, u_{3}\right) \\
& c_{1} \quad-c_{3}=u_{1} \\
& 2 c_{1}+c_{2}+c_{3}=u_{2} \\
& 3 c_{1}+2 c_{2}+c_{3}=u_{3} \\
& \text { Sis a spanning set of } R^{3}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 0 & -1 & u_{1} \\
2 & 1 & 1 & u_{2} \\
3 & 2 & 1 & u_{3}
\end{array}\right]} \\
& \text {-2R1+R2 } \rightarrow \text { R2 } \\
& {\left[\begin{array}{ccc|c}
1 & 0 & -1 & u_{1} \\
0 & 1 & 3 & -2 u_{1}+u_{2} \\
3 & 2 & 1 & u_{3}
\end{array}\right]} \\
& -3 R 1+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & -1 & u_{1} \\
0 & 1 & 3 & -2 u_{1}+u_{2} \\
0 & 2 & 4 & -3 u_{1}+u_{3}
\end{array}\right]} \\
& -2 R 2+R 3 \rightarrow R-3 \\
& \downarrow \\
& 3 u_{1}-6 u_{2}+3 u_{3} \\
& \text { Let } \vec{u}=(1,1,1) \\
& -4 u_{1}+2 u_{2} \\
& \begin{array}{l}
3 R 3+2 R 2 \rightarrow R 2
\end{array} \\
& \Gamma c_{1}=-\frac{1}{2}\left(-u_{1}-2 u_{2}+u_{3}\right)=1 \\
& c_{2}=\frac{1}{2}\left(-u_{1}-4 u_{2}+3 u_{3}\right)=-1 \\
& C_{3}=-\frac{1}{2}\left(u_{1}-2 u_{2}+u_{3}\right)=0 \\
& c_{1}(1,2,3)+c_{2}(0,1,2)+c_{3}(-1,1,1)=\vec{u} \\
& 1(1,2,3)+(-1)(0,1,2)+0(-1,1,1)^{?}=(1,1,1) \\
& (1,1,1) J
\end{aligned}
$$

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a set of vectors in a vector space V, then the Span of S is the set of all linear -3

The span of S is denoted br $\operatorname{span}(S)$ or $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$
when $S p a n(S)=V_{\text {it s said that } V} V$ is spanned br $S=\left\{\vec{v}_{1}, \vec{V}_{2}, \cdots, \vec{N}_{k}\right\}_{\text {or that }}$ $S_{\text {spans }} V$.

THEOREM 1.6: $\operatorname{Span}(S)$ IS A SUBSPACE OF V
If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a set of a vectors in a vector space V, then $\operatorname{span}(S)$ is a subspace of V. Moreover, span (S) is the Smallest subspace of V that contains S, in the sense that every other subspace of V that contains S must contain $\operatorname{span}(S)$.
Proof $\vec{u}=c_{1} \vec{j}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{v}_{k}, \vec{w}=d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}+\cdots+d_{k} \vec{j}_{k}$ $\in \operatorname{Span}(S)$, where c_{i}, d_{i} for $i=1,2, \ldots, k \in R$, and $b \in R$. span (S) is a nonempty subset of v.

$$
\begin{aligned}
\vec{u} & =c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{v}_{k} \\
+\vec{\omega} & =\underbrace{}_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}+\cdots+d_{k} \vec{v}_{k} \\
\vec{u}+\vec{w} & =\left(c_{1}+d_{1}\right) \vec{v}_{1}+\left(c_{2}+d_{2}\right) \vec{v}_{2}+\cdots+\left(c_{k}+d_{k}\right) \vec{v}_{k} \quad \in \operatorname{span}(s) J \\
b \vec{u} & =b\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{v}_{k}\right) \\
b \vec{u} & =\left(b\left(c_{1} \vec{v}_{1}\right)+b\left(c_{2} \vec{v}_{2}\right)+\cdots+b\left(c_{k} \vec{v}_{k}\right)\right) \\
b \vec{u} & \left.=\left(b c_{1}\right) v_{1}+\left(b c_{2}\right) \vec{v}_{2}+\cdots+\left(b c_{k}\right) \vec{v}_{k}\right) \in \operatorname{span}(s) l
\end{aligned}
$$

Example 3: Determine whether the set S spans R^{2}. If the set does not span R^{2}, then give a geometric description of the subspace that it does span.
a. $S=\{(1,-1),(2,1)\}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$

Let $\vec{u}=\left(u_{1}, u_{2}\right)$ be any vector in R^{2}, u_{1} and $u_{2} \in R$.

$$
\begin{aligned}
& c_{1} \vec{v}_{1}+c_{2} \vec{j}_{2}=\vec{u} \\
& c_{1}(1,-1)+c_{2}(2,1)=\left(u_{1}, u_{2}\right) \\
& c_{1}+2 c_{2}=u_{1} \\
&-\frac{c_{1}+c_{2}}{3 c_{2}}=u_{2} \\
& c_{2}=\frac{1}{3}\left(u_{1}+u_{2}+u_{2}\right)
\end{aligned}
$$

S spans R^{2} $\operatorname{span}(s)=R^{2}$

$$
-c_{1}+\frac{1}{3}\left(u_{1}+u_{2}\right)=u_{2}
$$

$$
-c_{1}+\frac{1}{3} u_{1}+\frac{1}{3} u_{2}=u_{2}
$$

$$
-c_{1}=-\frac{1}{3} u_{1}+\frac{2}{3} u_{2}
$$

$$
c_{1}=\frac{1}{3}\left(u_{1}-2 u_{2}\right)
$$

Check:

$$
\begin{aligned}
\frac{1}{3}\left(u_{1}-2 u_{2}\right)(1,-1)+\frac{1}{3}\left(u_{1}+u_{2}\right)(2,1) & \stackrel{?}{=}\left(u_{1}, u_{2}\right) \\
\left(u_{1}, u_{2}\right) & =\left(u_{1}, u_{2}\right) \text { yep }
\end{aligned}
$$

b. $\quad S=\left\{(1,2),(-2,-4),\left(\frac{1}{2}, 1\right)\right\}$

$$
\begin{aligned}
& c_{1}(1,2)+c_{2}(-2,-4)+c_{3}\left(\frac{1}{2}, 1\right)=\left(u_{0}, u_{2}\right) \\
& c_{1}-2 c_{2}+\frac{1}{2} c_{3}=u_{1} \\
& 2 c_{1}-4 c_{2}+c_{3}=u_{2} \\
&-2 c_{1}+4 c_{2}-c_{3}=-2 u_{1} \\
& 2 c_{1}-4 c_{2}+c_{3}=u_{2} \\
& 0=u_{2}-2 u_{1} \\
& u_{1}=\frac{1}{2} u_{2}
\end{aligned}
$$ line $y=2 x$.

c. $S=\left\{(-1,2),\left(2_{3}-1\right),\left(1_{1}, 1\right)\right\} \quad$ Let $\overrightarrow{v_{1}}=\left(u_{1}, u_{2}\right)$ be any vector in R^{2}.

$$
\begin{aligned}
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\vec{u} \\
& c_{1}(-1,2)+c_{2}\left(c_{1}-1\right)+c_{3}(1,1)=\left(u_{1}, u_{2}\right) \\
& -c_{1}+2 c_{2}+c_{3}=u_{1} \\
& 2 c_{1}-c_{2}+c_{3}=u_{2} \\
& -2 c_{1}+4 c_{2}+2 c_{3}=2 u_{1} \\
& 2 c_{1}-c_{2}+c_{3}=u_{2} \\
& 3 c_{2}+3 c_{3}=2 u_{1}+u_{2} \\
& c_{3}=\frac{1}{3}\left(2 u_{1}+u_{2}-3 c_{2}\right) \\
& -c_{1}+2 c_{2}+\frac{1}{3}\left(2 u_{1}+u_{2}-3 c_{2}\right)
\end{aligned} \begin{aligned}
-c_{1}+2 c_{2}+\frac{2}{3} u_{1}+\frac{1}{3} u_{2}-c_{2} & =u_{1} \\
-c_{1}+c_{2} & =\frac{1}{3} u_{1}-\frac{1}{3} u_{2} \\
& =c_{1} \\
= & \text { see next page }
\end{aligned}
$$

DEFINITION OF LINEAR DEPENDENCE AND LINEAR INDEPENDENCE
A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ in a vector space V is called linearly indeponden when the vector equation

$$
C_{1} V_{1}+c_{2} \stackrel{\rightharpoonup}{V}_{2}+\cdots+C_{N} \stackrel{\rightharpoonup}{V}_{k}=\stackrel{\rightharpoonup}{0}
$$

has only the trivia solution

$$
c_{1}=c_{2}=\cdots=c_{k}=0
$$

If there are also nontrivial solutions, then S is called linearly dependent

$$
\begin{aligned}
& 2\left(c_{2}-\frac{1}{3} u_{1}+\frac{1}{3} u_{2}\right)-c_{2}+c_{3}=u_{2} \\
& c_{2}-\frac{2}{3} u_{1}+\frac{2}{3} u_{2}+c_{3}=u_{2} \\
& c_{2}+\frac{1}{3}\left(2 u_{1}+u_{2}-3 c_{2}\right)=\frac{2}{3} u_{1}
\end{aligned}
$$

reds in matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-1 & 2 & 1 & u_{1} \\
2 & -1 & 1 & u_{2}
\end{array}\right] \quad \rightarrow-c_{1}+2 c_{2}+c_{3}=u_{1}} \\
& c_{2}+c_{3}=\frac{1}{3}\left(2 u_{1}+u_{2}\right) \\
& \text { Let } c_{3}=0 \text {, } \\
& 2 R 1+R 2 \rightarrow R 2 \\
& {\left[\begin{array}{ccc|c}
-1 & 2(1) & u_{1} \\
0 & 3 & 3 & 2 u_{1}+u_{2}
\end{array}\right]} \\
& -c_{1}+2 c_{2}=u_{1} \\
& C_{2}=\frac{2}{3} u_{1}+\frac{1}{3} u_{2} \\
& -c_{1}+2\left(\frac{2}{3} u_{1}+\frac{1}{3} u_{2}\right)=u_{1} \\
& -c_{1}+\frac{u_{3}}{3} u_{1}+\frac{2}{3} u_{2}=u_{1} \\
& c_{1}=\frac{1}{3} u_{1}+\frac{2}{3} u_{2} \\
& \text { With } c_{3}=0 \text { : } \\
& c_{1}(-1,2)+c_{2}(2,-1)=\left(u_{1}, u_{2}\right) \\
& \frac{1}{3}\left(u_{1}+2 u_{2}\right)(-1,2)+ \\
& \frac{1}{3}\left(2 u_{1}+u_{2}\right)(2,-1)=\left(u_{1}, u_{2}\right) \\
& \text { Abstract as heck! } \\
& \text { Let } \vec{u}=(1,2) \text { : } \\
& \left(-\frac{5}{3}, \frac{10}{3}\right)+\left(\frac{6}{3},-\frac{4}{3}\right)=(1,2) \quad S \text { spans } R^{2} \text {. }
\end{aligned}
$$

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a set of vectors in a vector space V. To determine whether S is linearly independent of linearly dependent, use the following steps.

1. From the vector equation \qquad $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{N}_{k}=\overrightarrow{0}$ write a \qquad syst linear equations in the variables c_{1}, c_{2}, \ldots, and c_{k}.
2. Use Gaussian elimination to determine whether the system has a \qquad unique trivial solution, $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$, then the set S is linearly independent. If the system has \qquad nontrivial solutions, then S is linearly dependent.

Example 4: Determine whether the set S is linearly independent or linearly dependent.

$$
\begin{aligned}
& \text { a. } s=\{(3,-6),(-1,2)\} \\
& \vec{v}_{1} \stackrel{\dot{v}_{2}}{ } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0} \\
& c_{1}(3,-6)+c_{2}(-1,2)=(0,0)
\end{aligned} \quad\left[\begin{array}{cc|c}
3 & -1 & 0 \\
-6 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lr|r}
3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& 6 c_{1}-2 c_{2}=0 \\
& 3 c_{1}-c_{2}=0
\end{aligned}
$$

b. $S=\{(6,2,1),(-1,3,2)\}$

$$
-6 c_{1}+2 c_{2}=0
$$

$c_{1}(3,-6)+3 c_{1}(-1,2)=(0,0)$

$$
0=0
$$ S is linearly dependent since ב solutions other than $C_{1}=C_{2}=0$.

$$
\begin{aligned}
& c_{1}-c_{2}=0 \\
& 2 c_{1}+3 c_{2}=0 \\
& c_{1}+2 c_{2}=0
\end{aligned} \rightarrow
$$

Nate: for TI- 81 you cant res a matrix w/more rows than column.

$$
\begin{aligned}
& \text { only } \\
& \text { Sokefion } \\
& (0,1,1,1),(1,1,1,1)\}
\end{aligned} \rightarrow 0(6,2,1)+o(-1,3,2)=(0,0,0)
$$

c. $S=\left\{(0,0,0,1), \underset{\mathbf{V}_{\mathbf{1}}}{(0,0,1,1)}, \underset{\mathbf{V}_{\mathbf{2}}}{(0, \underset{\mathbf{V}}{1}, 1,1)}, \underset{\mathbf{v}}{(1,1,1,1)}\right\}$

$$
\begin{aligned}
& c_{6}(0,0,0,1)+c_{2}(0,0,1,1)+c_{3}(0,1,1,1)+c_{4}(1,1,1,1)=(0,0,0,0) \\
& c_{4}=0 \\
& c_{3}+c_{4}=0 \\
& c_{2}+c_{3}+c_{4}=0 \\
& c_{1}+c_{2}+c_{3}+c_{4}=0
\end{aligned}
$$

$$
\begin{gathered}
c_{1}+c_{2}+c_{3}+c_{4}=0 \\
c_{6}=c_{2}=c_{3}=c_{4}=0 \text { so } 5 \text { is linear ly independent }
\end{gathered}
$$

THEOREM 1.7: A PROPERTY OF LINEARLY DEPENDENT SETS
A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}, k \geq 2$, is linearly dependent if and only if at least one of the vectors \mathbf{v}_{j} can be written as a linear combination of the other vectors in S.

Proof:

1) Suppose S is linearly dependent. Then 3 scalars, not all zero, $\rightarrow c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}$. Let $c_{1} \neq 0$.
Then we have

$$
\begin{aligned}
& c_{1} \vec{v}_{1}=-c_{2} \vec{v}_{2}-c_{3} \vec{v}_{2}-\cdots-c_{k} \vec{v}_{k} \\
& \vec{v}_{1}=-\frac{c_{2}}{c_{1}} \vec{v}_{2}-\frac{c_{3}}{c_{1}} \vec{v}_{3}-\cdots-\frac{c_{k}}{c_{6}} \vec{v}_{k}
\end{aligned}
$$

2) Suppose

$$
\begin{aligned}
& \vec{v}_{1}=c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\cdots+c_{k} \vec{v}_{k} \\
& \overrightarrow{0}=-\vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\cdots+c_{k} \vec{v}_{k}
\end{aligned}
$$

The coefficient to \vec{v}_{1} is $-1 \neq 0 . \therefore$ S is linearly dependent. II

Two vectors \mathbf{u} and \mathbf{v} in a vector space V are linearly dependent if and only if one is a Scalar multiples of the other.

Example 5: Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in the set whose sum is the zero vector. Then express one of the vectors in the set as a linear combination of

$$
\begin{aligned}
& \text { the other vectors in the set. } \\
& S=\{(2,4),(-1,-2),(0,6)\} \\
& c_{1}(2,4)+c_{2}(-1,-2)+c_{3}(0,6)=(0,0) \\
& -2(-1,-2)+0(0,6)=(2,4)\left[\begin{array}{l}
2 c_{1}-c_{2}=0 \\
4 c_{1}-2 c_{2}+6 c_{3}=0 \\
{[2-10}
\end{array}\right. \\
& c_{1} \quad c_{2} \\
& c_{1}(2,4)+c_{2}(-1,-2)=(0,6)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
2 c_{1}-c_{2}=0 \\
4 c_{1}-2 c_{2}=6
\end{array} \rightarrow\left[\begin{array}{ll|l}
2 & -1 & 0 \\
4 & -2 & 6
\end{array}\right] \rightarrow\left[\begin{array}{lll}
2 & -1 & 0 \\
2 & -1 & 3
\end{array}\right] \\
& c_{1}(-1,-2)+c_{2}(0,6)=(2,4) \\
& -c_{1}=2 \rightarrow c_{1}=-2 \\
& -2 c_{1}+6 c_{2}=4 \\
& -2(-1,-2)+0(0,6)=(2,4) \\
& \longrightarrow+4+6 c_{2}=4 \rightarrow c_{2}=0 \\
& \text { DEFINITION OF BASIS } \\
& (0,6)=(0,0) \\
& 1(2,4)+2(-1,-2)+0(0,6)=(0,0)
\end{aligned}
$$

A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in a vector space V is called a \qquad basis for \qquad
A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in a vector space V is called a
the following conditions are true. when

1. s spans V. 2. S is linearly independent.

The Standard Basis for R^{3}

$$
S=\{(1,0,0),(0,1,0),(0,0,1)\}
$$

Example 6: Write the standard basis for the vector space.
a. R^{2}

$$
S=\{(1,0),(0,1)\}
$$

$\begin{aligned} \text { b. } R^{s} \quad & S=\left\{\begin{array}{l}\{(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0), \\ (0,0,0,0,0,0\}\end{array}\right.\end{aligned}$

$$
\text { c. } \begin{aligned}
R^{n} \quad S= & \{(1,0,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0,0, \ldots, 0,1,0), \\
& (0,0, \ldots, 0,0,1)\} \\
& n \text { vectors }
\end{aligned}
$$

Example 7: Determine whether S is a basis for the indicated vector space. $S=\{(2,1,0),(0,-1,1)\}$ for R^{3}

Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ be any vector in R^{3}.

$$
\left.\begin{array}{rl}
c_{1}(2,1,0)+c_{2}(0,-1,1)=\left(u_{1}, u_{2}, u_{3}\right) \\
2 c_{1} & =u_{1} \rightarrow c_{1}=\frac{1}{2} u_{1} \\
c_{1}-c_{2} & =u_{2} \rightarrow c_{2}=c_{1}+u_{2} \\
c_{2} & =u_{3}
\end{array}\right\}
$$

$$
\frac{1}{2} u_{1}(2,1,0)+u_{3}(0,-1,1)
$$

Let's check the system:

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of vectors in S.

Proof:
Since S is a basis for V, S is linearly independent

Evil plan s spans Vanda S is lin, ind.
is lining. we know that $c_{1}=0$, se we can't mat. both sides by $\frac{1}{c_{1}}$.
Let $u=(1,2,3)$
$\frac{1}{2} \cdot 1(2,1,0)+3(0,-1,1) \stackrel{?}{=}(1,2,3)$
$\left.\left(1, \frac{1}{2}, 0\right)+(0,-3,3) \stackrel{?}{=}(1,2,3)\right]$
$\frac{\left(1,-\frac{5}{2}, 3\right) \neq(1,2,3)}{\text { Sis not a basis for } R^{3}}$
since S doesn't span
R^{3}.

Proof: Since S is a basin for V, S spans V and δ is linearly independent.
Let $\vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$ and suppose \vec{u} can abd be written as $\vec{u}=b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}+\ldots+b_{n} \vec{v}_{n}$.

$$
\begin{aligned}
\vec{u} & =c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n} \\
-\frac{\vec{u}}{\vec{u}} & =\left(b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}+\cdots+b_{n} \vec{v}_{n}\right) \\
\frac{1}{0} & =\left(c_{1} \vec{v}_{1}-b_{1} \vec{v}_{1}\right)+\left(c_{2} \vec{v}_{2}-b_{2} \vec{v}_{2}\right)+\cdots+\left(c_{n} \vec{v}_{n}-b_{n} \vec{v}_{n}\right) \\
\overrightarrow{0} & =\left(c_{1}-b_{1}\right) \vec{v}_{1}+\left(c_{2}-b_{2}\right) \vec{v}_{2}+\cdots+\left(c_{n}-b_{n}\right) \vec{v}_{n}
\end{aligned}
$$

Since is linearly independent,

$$
\begin{aligned}
c_{1}-b_{1} & =0, c_{2}-b_{2}=0, \ldots, c_{n}-b_{n}=0 \\
c_{1} & =b_{1}, c_{2}=b_{2}, \ldots, c_{n}=b_{n}
\end{aligned}
$$

Thus the basis representation is unique. II

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every set containing more than n_ vectors in V is linearly dependent

THEOREM 1.10: NUMBER OF VECTORS IN A BASIS
If a vector space V has one basis with n vectors, then every basis for V has n vectors.
Proof Let $S_{1}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be a basis for v, and suppose $S_{2}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}\right\}$ also be a basis for V.
Since S_{1} is linearly independent and S_{2} spans V, $n \leqslant m$ [1 hm .1 .9]. Similarly, since ρ_{2} is linearly independent and S, spans $V, m \leq n[T h m .1 .9]$. Hence, $m=n$.

DEFINITION OF DIMENSION OF A VECTOR SPACE
If a vector space V has a basis_ consisting of n vectors, then the number n is called the dimension_ of V, denoted $b y=d i m(v)$ When V consists of the Zero vector alone, the dimension of V is defined as 0 .

Example 8: Determine the dimension of the vector space.

$$
\begin{array}{lll}
\text { a. } R^{2} & \text { b. } R^{5} & \text { c. } R^{n} \\
\operatorname{dim}\left(R^{2}\right)=2 & \operatorname{dim}\left(R^{5}\right)=5 & \operatorname{dim}\left(R^{n}\right)=\eta
\end{array}
$$

Let V be a vector space of dimension n.

1. If $S=\left\{\frac{v_{2}}{v_{2}}, \cdots, V_{n}\right\}$ a linearly independent set of vectors in V, then \qquad is a basis for
\qquad spacr.ans is a \qquad basis for \qquad .

Example 9: Determine whether S is a basis for the indicated vector space.
$S=\{(1,2),(1,-1)\}$ for $R^{2} . \quad \operatorname{dim}\left(R^{2}\right)=Z$

$$
c_{1}(1,2)+c_{2}(1,-1)=(0,0)
$$

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
\frac{2 c_{1}-c_{2}}{} & =0 \\
3 c_{1} & =0 \\
c_{1} & =0 \\
c_{2} & =0
\end{aligned}
$$

$c_{1}=c_{2}=0 \rightarrow S$ is linearly independ. and S has 2 vector 5 and $Z=\operatorname{dim}\left(R^{2}\right)$ so S is a basis for R^{2}.
2.1 Matrix Operations

Learning Objectives

1. Determine whether two matrices are equal
2. Add and subtract matrices, and multiply a matrix by a scalar
3. Multiply two matrices
4. Use matrices to solve a system of equations
5. Partition a matrix and write a linear combination of column vectors

Matrices can be thought of as adjoined column vectors. They are represented in the following ways:

1. Capital ever A, B, C
2. Representative element $A=\left[a_{i j}\right]$

DEFINITION OF EQUALITY OF MATRICES
Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are RqLaL when they have the same \qquad $m \times n$ \qquad and \qquad $a_{i j}=b_{i j}$ for \qquad $1 \leq i \leq m$ and \qquad $1 \leq j \leq n$

Example 1: Are matrices A and B equal? Please explain. $\left.A=\left[\begin{array}{llll}1 & -1 & 3 & 8\end{array}\right] \quad \begin{array}{c}B=\left[\begin{array}{c}1 \\ -1 \\ 3 \\ 4 \times 4\end{array}\right. \\ \text { NO } \rightarrow \text { not thesamesize! }\end{array}\right]$

Example 2: Find x and y.
$\left[\begin{array}{cc}2 x-1 & 4 \\ 3 & y^{3}\end{array}\right]=\left[\begin{array}{cc}-5 & 4 \\ 3 & \frac{1}{8}\end{array}\right]$

$$
\begin{aligned}
2 x-1 & =-5 \\
x & =-2
\end{aligned}
$$

A matrix that has only one \qquad column is called a \qquad column matrix or
\qquad vector . A matrix that has only one \qquad is called a
\qquad matrix \qquad vector . As we learned earlier, boldface lowercase letters often designate \qquad matióx and column matrix.

$$
\begin{array}{ll}
\vec{a}_{1}=\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] & A=\left[\begin{array}{ll}
\vec{a}_{1} & a_{2}
\end{array}\right] \\
\vec{a}_{2}=\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right] & A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
\end{array}
$$

DEFINITION OF MATRIX ADDITION
If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices of size $m \times n$, then their \qquad is the $m \times n$ matrix given by

$$
A+B=\left[a_{i j}+b_{i j}\right]
$$

The sum of two matrices of different sizes is \qquad undefined

DEFINITION OF SCALAR MULTIPLICATION
If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and c is a scalar, then the Scalar multiple of A by c is the \qquad matrix given by

$$
c A=\left[c a_{i j}\right]
$$

Note: You can use A to represent the scalar product $(-1) A$. If A and B are of the same size, then $A-B$ represents the sum of A and $-B$.
\qquad
Example 3: Find the following for the matrices

$$
A=\left[\begin{array}{ccc}
1 & -3 & 6 \\
2 & 0 & 2 \\
-2 & 8 & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
5 & 2 & 7 \\
-1 & 9 & -4 \\
-3 & 0 & 1
\end{array}\right]
$$

a. $A+B$

$$
=\left[\begin{array}{ccc}
\text { a. } & A+B & 13 \\
1 & 9 & -2 \\
-5 & 8 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\text { b. } 2 A-B & 12 \\
2 & -6 & 12 \\
4 & 0 & 4 \\
-4 & 16 & -2
\end{array}\right]+\left[\begin{array}{ccc}
5 & -2- \\
+1-9+ \\
+3-0
\end{array}\right]
$$

If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $B=\left[b_{i j}\right]$ is an $n \times p$ matrix, then the product $A B$ is an $m \times p$ matrix.

$$
A B=C=\left[c_{i j}\right]
$$

where

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

To find an entry in the th row and the j th column of the product $A B$, multiply the indies in the it row of A by the corresponding entries in the \qquad isth column of B and then Sung the results.

Example 4: Find the product $A B$, where
$A=\left[\begin{array}{rr}15 & 0 \\ 4 & 5 \\ -3 & 1\end{array}\right]$ and $B=\left[\begin{array}{llll}-12 & 7 & 5 & -1 \\ -13 & 1 & 2 & 11\end{array}\right]$ $3 \times 2 \quad 2 \times 4$ resulting size is 3×4

Example 5: Consider the matrices A and B.

$$
A=\left[\begin{array}{cr}
-1 & 3 \\
11 & 13
\end{array}\right] \underset{2 \times 2}{\text { and } B=\left[\begin{array}{cc}
-4 & 4 \\
6 & 13
\end{array}\right]}
$$

a. Find $A+B$

$$
A+B=\left[\begin{array}{ll}
-1+(-4) & 3+4 \\
11+6 & 13+13
\end{array}\right]=\left[\begin{array}{cc}
-5 & 1 \\
17 & 26
\end{array}\right]=\left[\begin{array}{cc}
-4+(-1) & 4+3 \\
6+11 & 13+13
\end{array}\right]=B+A
$$

$\left[\begin{array}{cc}\text { c. Find } A B \\ -1 & 3 \\ 11 & 13\end{array}\right]\left[\begin{array}{cc}-4 & 4 \\ 6 & 13\end{array}\right]=\left[\begin{array}{ll}(-1)(-4)+(3)(6) & (-1)(4)+(3)(13) \\ (11)(-4)+(13)(6) & (11)(4)+(13)(13)\end{array}\right]$

$$
=\left[\begin{array}{ll}
22 & 35 \\
34 & 213
\end{array}\right]
$$

$$
\begin{aligned}
& \text { d. Find } B A \\
& {\left[\begin{array}{cc}
-4 & 4 \\
6 & 13
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
11 & 13
\end{array}\right]=\left[\begin{array}{ll}
(-4)(-1)+(4)(11) \\
(6)(-1)+(13)(1) \\
& \left.=\left[\begin{array}{ll}
48 & 40 \\
137 & 187
\end{array}\right]\right\}
\end{array}\right.} \\
& \text { Is matrix addition commutative? }
\end{aligned}
$$

It look like it might be is
Is matrix multiplication commutative?

$$
\left.\begin{array}{rl}
\vec{a}_{1} & \mathbf{a}_{2} \\
\vec{a}_{\mathbf{3}} \\
a_{11} & a_{12} \\
a_{21} & a_{13} \\
a_{31} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
\vec{x} \\
x_{1} \\
3 \times 3
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \overrightarrow{\boldsymbol{a}_{1}} \boldsymbol{x}_{\mathbf{1}}=\left[\begin{array}{l}
\boldsymbol{a}_{11} \\
\boldsymbol{a}_{21} \\
\boldsymbol{a}_{31}
\end{array}\right] \boldsymbol{x}_{\mathbf{1}}=\left[\begin{array}{ll}
\boldsymbol{a}_{11} & x_{1} \\
\boldsymbol{a}_{21} & \boldsymbol{x}_{1} \\
\boldsymbol{a}_{\mathbf{3 1}} & x_{1}
\end{array}\right]
$$

SYSTEMS OF LINEAR EQUATIONS

$$
\left(\left[\begin{array}{l}
{\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
a_{31} x_{1}
\end{array}\right]+a_{32} x_{2}+a_{33} x_{3}}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\right.
$$

can be written as

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \text { or equivalently, } \quad \mathbf{A} \overrightarrow{\boldsymbol{x}}=\overrightarrow{\mathbf{b}}
$$

Example 6: Write the system of equations in the form $A \mathbf{x}=\mathbf{b}$ and solve this matrix equation for \mathbf{x}.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=5 \\
& x_{1}+4 x_{2}=10 \\
& A=\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right], \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \vec{b}=\left[\begin{array}{l}
5 \\
10
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
5 \\
10
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
5 \\
10
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
2 & 3 & 5 \\
1 & 4 & 10
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ll|l}
2 & 3 & 5 \\
0 & 1 & 3
\end{array}\right] \\
& {\left[\begin{array}{cc|c}
-2 R 2 \\
2 & 3 & 5 \\
0 & -5 & -15
\end{array}\right] \rightarrow R 2\left[\begin{array}{ccc}
2 & 0 & -4 \\
0 & 1 & 3
\end{array}\right]}
\end{aligned}
$$

PARTITIONED MATRICES

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

LINEAR COMBINATIONS (MATRICES)
The matrix product $A \mathbf{x}$ is a linear combination of the \qquad column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots, \mathbf{a}_{n}$ that form the

The system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} can be expressed as such a \qquad linear
\qquad , where the \qquad coefficients of the linear combination are a Solution of the system.

Example 7: Write the column matrix \mathbf{b} as a linear combination of the columns of A

$$
\begin{aligned}
& x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b} \\
& x_{1}\left[\begin{array}{c}
-1 \\
16
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-7 \\
63
\end{array}\right] \\
& 4\left[\begin{array}{c}
-1 \\
16
\end{array}\right]+(-1)\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-7 \\
63
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
-1 x_{1} \\
16 x_{1}
\end{array}\right]\left[\begin{array}{l}
3 x_{2} \\
1 x_{2}
\end{array}\right]=\left[\begin{array}{c}
-7 \\
63
\end{array}\right]} \\
& {\left[\begin{array}{l}
-x_{1}+3 x_{2} \\
16 x_{1}+x_{2}
\end{array}\right]=\left[\begin{array}{c}
-7 \\
63
\end{array}\right]} \\
& -x_{1}+3 x_{2}=-7 \\
& 16 x_{1}+x_{2}=63 \\
& x_{1}=4, x_{2}=-1
\end{aligned}
$$

Example 8: Find the products $A B$ and $B A$ for the diagonal matrices.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& B=\left[\begin{array}{ccc}
-7 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 12
\end{array}\right] \\
& A B=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{ccc}
-7 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 12
\end{array}\right] \\
& =\left[\begin{array}{lll}
3(-7)+0(0)+0(0) & 3(0)+0(4)+0(0) & 3(0)+0(0)+0(12) \\
0(-7)+(-5)(0)+(0)(0) & 0(0)+(-5)(4)+(0)(0) & 0(0)+(-5)(0)+0(12) \\
0(-7)+0(0)+5(0) & (0)(0)+0(4)+(5)(0) & 0(0)+(0)(0)+5(12)
\end{array}\right] \\
& \text { Example 9: Use the given partitions of } A \text { and } B \text { to compute } A B \text {. } \\
& \left.\begin{array}{r|r|r}
& A \times 2 & =\left[\begin{array}{r}
2 \\
-1
\end{array}\right. \\
\hline 3 & 1
\end{array}\right] \text {, and } B=\left[\begin{array}{ll}
3 & 0 \\
2 \times 2 & 1
\end{array}\right] \\
& A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], B=\left[\begin{array}{l}
B_{11} \\
B_{21}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-21 & 0 & 0 \\
0 & -20 & 0 \\
0 & 0 & 000
\end{array}\right] \\
& A_{11}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \quad A_{12}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& A_{21}=[3] \quad A_{22}=[1] \\
& A B=\left[\begin{array}{l}
A_{11} B_{11}+A_{12} B_{21} \\
A_{21} B_{11}+A_{22} B_{21}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
8 & 1 \\
-3 & 0 \\
11 & 1
\end{array}\right] \\
& \left(\begin{array}{l}
{[3}
\end{array}\right]\left[\begin{array}{ll}
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
9 & 0
\end{array}\right]
\end{aligned}
$$

2.2: Properties of Matrix Operations

Learning Objectives

1. Use the properties of matrix addition, scalar multiplication, and zero matrices
2. Use the properties of matrix multiplication and the identity matrix
3. Find the transpose of a matrix
4. Use Stochastic matrices for applications

THEOREM 2.1: PROPERTIES OF MATRIX ADDITION AND SCALAR MULTIPLICATION

If A, B, and C are $m \times n$ matrices, and c and d are scalars, then the following properties are true. Let $A=\left[a_{i j}\right], B=\left[b_{i j}\right], C=\left[c_{i j}\right] \Rightarrow a_{i j}, b_{i j}$, and $c_{i j}, 1 \leq i \leq m, 1 \leq j \leq n, \in R$.

1. $A+B=$ \qquad Commutative property of addition

$$
\begin{aligned}
& \text { Proof: } \\
& A+B=\left[a_{i j}\right]+\left[b_{i j}\right]
\end{aligned}
$$

$P=\left[b_{i j}\right]+\left[a_{i j}\right]$ daff matrix (t)

$$
\begin{aligned}
& =\left[a_{i j}+b_{i j}\right] \text { deft matrix (t) } \\
& =\left[b_{i j}+a_{i j}\right] \text { R is comm. th }
\end{aligned}
$$

2. $A+(B+C)=(A+B)$
$(c d) A=(c d)\left[a_{i j}\right]$
Associative property of addition
\qquad
3. $c(A+B)=C A+C B$ Distributive property
$\underset{c}{\text { Proof: }} \underset{c}{ }(A+B)=c\left(\left[a_{i j}\right]+\left[b_{i j}\right]\right)$

$$
\text { Poon } c(A+B)=c\left(\left[a_{i j}\right]+\left[b_{i j}\right]\right)
$$

$$
=c\left[a_{i j}+b_{i j}\right] \text { deft matrix }(t)
$$

$$
\left.=\left[c_{i} i_{i}+b_{i j}\right]\right] \text { Ri distiobilive }
$$

6. $(c+d) A=$ \qquad cA $+d A$ Distributive property

$$
\begin{aligned}
& =c(d A)
\end{aligned}
$$

Example 1: For the matrices below, $c=-2$, and $d=5$,

$$
A=\left[\begin{array}{rr}
-3 & 5 \\
3 & 4 \\
4 & 8
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 1 \\
2 & 7 \\
6 & 9
\end{array}\right] \quad C=\left[\begin{array}{cc}
-7 & 1 \\
-2 & 3 \\
11 & 2
\end{array}\right]
$$

a. $c(A+C)=-2\left[\begin{array}{cc}-10 & 6 \\ 1 & 7 \\ 15 & 10\end{array}\right]$

$$
=\left[\begin{array}{cc}
+20 & -12 \\
-2 & -14 \\
-30 & -20
\end{array}\right]
$$

b. $\begin{aligned} c d B & =-10\left[\begin{array}{cc}1 & 1 \\ 2 & 7 \\ 6 & 9\end{array}\right] \\ & =\left[\begin{array}{ll}-10 & -10 \\ -20 & -10 \\ -60 & -90\end{array}\right]\end{aligned}$
c. $c A-(B+C)=\left[\begin{array}{ll}12 & -12 \\ -6 & -18 \\ -25 & -27\end{array}\right]$

THEOREM 2.2: PROPERTIES OF ZERO MATRICES

If A is an $m \times n$ matrix, and c is a scalar, then the following properties are true.

1. $A+O_{m n}=$ A additive identity
2. $A+(-A)=0$ additive inverse
3. If $c A=O$, then $L=0$ or $A=O_{m n}$.

Example 2: Solve for X in the equation, given

$$
A=\left[\begin{array}{rr}
-2 & -1 \\
1 & 0 \\
3 & -4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
0 & 3 \\
2 & 0 \\
-4 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& -A-2 B=X \\
& {\left[\begin{array}{l}
2 \\
1 \\
0 \\
=-3 \\
-3
\end{array}\right]+\left[\begin{array}{cc}
0 & -6 \\
-4 & 0 \\
9 & 2
\end{array}\right]=X} \\
& {\left[\begin{array}{cc}
2 & -5 \\
-5 & 0 \\
5 & 6
\end{array}\right]=X}
\end{aligned}
$$

If A, B, and C are matrices (with sizes such that the given matrix products are defined), and c is a scalar, then the following properties are true.

1. $A(B C)=$ \qquad $(A B) C$ Associative property of multiplication
2. $A(B+C)=$ \qquad $A B+A B$ Distributive property of multiplication
3. $(A+B) C=A C+B C$ Distributive property of multiplication
4. $c(A B)=(c A) B=\mathbf{A}(C B)$

Example 3: Show that $A C=B C$, even though $A \neq B$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 5 & 4 \\
3 & -2 & 1
\end{array}\right] \\
& B=\left[\begin{array}{ccc}
4 & -6 & 3 \\
5 & 4 & 4 \\
-1 & 0 & 1
\end{array}\right] \\
& C=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
4 & -2 & 1
\end{array}\right] \\
& \begin{array}{l}
A C=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 5 & 4 \\
3 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
4 & -2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
12 & -6 & 3 \\
16 & -8 & 4 \\
4 & -2 & 1
\end{array}\right] \quad A C=B C \\
B C=\left[\begin{array}{ccc}
4 & -6 & 3 \\
5 & 4 & 4 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
4 & -2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
12 & -6 & 3 \\
16 & -8 & 4 \\
4 & -2 & 1
\end{array}\right]
\end{array}
\end{aligned}
$$

Example 4: Show that $A B=\mathbf{0}$, even though $A \neq \mathbf{0}$ and $B \neq \mathbf{0}$.
$A=\left[\begin{array}{ll}2 & 4 \\ 2 & 4\end{array}\right] \quad B=\left[\begin{array}{rr}1 & -2 \\ -\frac{1}{2} & 1\end{array}\right]$
$18=\left[\begin{array}{c}24 \\ 2\end{array}\right]\left[\begin{array}{c}1 \\ 2\end{array}\right]$
$=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad \omega 0 \omega 川$

THEOREM 2.4: PROPERTIES OF THE IDENTITY MATRIX
If A is an $m \times n$ matrix, then the following properties are true.

1. $A I_{n}=\mathrm{A}$
2. $I_{m} A=\underline{A}$

$I_{n}=\left[\begin{array}{ccccc}1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \vdots & \ddots & \vdots \\ 0 & \vdots & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0\end{array}\right]$
THEOREM 2.5: NUMBER OF SOLUTIONS OF A LINEAR SYSTEM
For a system of linear equations, precisely one of the following is true.
3. The system has exactly ane solution.
4. The system has infinitely many solutions.
5. The system has no solution.

In Octave: A^{\prime} and trans (A)
THE TRANSPOSE OF A MATRIX
The transpose of a matrix is denoted \qquad A^{\top} and is formed by writing its columns as as rows Example 5: Find the transpose of the matrix.
a. $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 9 \\ 4 & 10\end{array}\right] \quad{ }_{3 \times 2} \quad A^{\top}=\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & 9 & 10\end{array}\right]$
b. $A=\left[\begin{array}{ccc}6 & -7 & 19 \\ -7 & 0 & 23 \\ 19 & 23 & -32\end{array}\right] \quad A^{\top}=\left[\begin{array}{ccc}6 & -7 & 19 \\ -7 & 0 & 23 \\ 19 & 23 & -32\end{array}\right]$

If $A=A^{\top}$
A is symmetric

THEOREM 2.6: PROPERTIES OF TRANSPOSES
If A and B are matrices (with sizes such that the given matrix operations are defined), and c is a scalar, then the following properties are true. Let $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \geqslant a_{i j}, b_{i j} \in R$

1. $\left(A^{T}\right)^{T}=\mathrm{A}$ Transpose of a transpose

$$
\begin{aligned}
& \text { Proof: } \\
&\left(A^{\top}\right)^{\top}=\left(\left[a_{i j}{ }^{\top}\right)^{\top} \Gamma=\left[a_{i j}\right]\right. \\
&=\left[a_{j j}\right]
\end{aligned}
$$

2. $(A+B)^{T}=A^{\top}+B^{\top}$ Transpose of a sum

$$
\begin{aligned}
(A+B)^{T} & =\left(\left[a_{i j}\right]+\left[b_{i j}\right]\right)^{\top} \\
& =\left[a_{i j}+b_{i j}\right]^{\top} \text { dean of matrix (t) } \\
& =\left[a_{j i}+b_{j i}\right] \rightarrow=\left[a_{j i}\right]+\left[b_{j i}\right] \rightarrow=A^{\top}+B^{\top}
\end{aligned}
$$

3. $(c A)^{T}=C A^{\top} \quad$ Transpose of a scalar multiple
4. $(A B)^{T}=B^{\top} A^{\top}$ Transpose of a product

CREATED BY SHANNON MARTIN MYERS
$\left.\begin{array}{l}A \text { is map } \quad A^{\top} \text { is } n \times m \\ B \text { is nap } \quad B^{\top} \text { is } p \times n\end{array}\right\} \begin{aligned} & B^{\top} A^{\top} \text { is defined }\end{aligned}$ B is $z_{z} \times p \quad B^{T}$ is $p \times n\{p \times n n \times m$

Example 6: Find a) $A^{T} A$ and b) $A A^{T}$. Show that each of these products is symmetric.

$$
A=\left[\begin{array}{cccc}
4 & -3 & 2 & 0 \\
2 & 0 & 11 & -1 \\
-1 & -2 & 0 & 3 \\
14 & -2 & 12 & -9 \\
6 & 8 & -5 & 4
\end{array}\right]
$$

A is 5×4

$$
A^{\top} \text { is } 4 \times 5
$$

Example 7: A square matrix is called skew-symmetric when $A^{T}=-A$. Prove that if \underline{A} and \underline{B} are skewsymmetric matrices, then $A+B$ is skew-symmetric.

$$
\begin{aligned}
(A+B)^{\top} & =A^{\top}+B^{\top} \\
& =-A+(-B) \quad[A \text { and } B \text { arse } \\
& =-1(A+B) \\
& =-(A+B)
\end{aligned}
$$

STOCHASTIC MATRICES
Many types of applications involve a finite set of States $\left\{s_{1}, s_{2}, \ldots, S_{n}\right\}$ of a given population. The probability _t that a member of a population will change from the
\qquad state to the \qquad th state is represented by a number \qquad , where
\qquad . A probability of \qquad means that the member is certain \qquad to change from the j th state to the i th state whereas a probability of \qquad means that the member is

Certain to change from the j th state to the i th state.

$$
P=\left[\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 n} \\
P_{21} & P_{22} & \cdots & P_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
P_{n 1} & P_{n 2} & \cdots & P_{n n}
\end{array}\right]
$$

P is called the \qquad matrix \qquad or change to another
pe of matrix is called . An \qquad matrix P is a stochastic matrix when each entry is a number between \qquad 0 and \qquad inclusive.

Example 8: Determine whether the matrix is stochastic.

$$
A=\left[\begin{array}{cc}
0.35 & 0.2 \\
0.65 & 0.75
\end{array}\right]
$$

$$
B=\left[\begin{array}{ccc}
\frac{1}{8} & \frac{3}{5} & \frac{1}{12} \\
\frac{1}{2} & \frac{1}{10} & \frac{1}{3} \\
\frac{3}{8} & \frac{3}{10} & \frac{7}{12}
\end{array}\right]
$$

Example 9: A medical researcher is studying the spread of a virus in a population of 1000 aboratory mice. During any week, there is an 80% probability that an infected mouse will overcome the virus, and during the same week, there is a 10% probability that a noninfected will become infected. ene hundred) mice are currently infected with the virus. How many will be infected (a) next week and (b) in two
weeks? $\left.\begin{array}{ll}I & N I \\ P_{11} & P_{12} \\ P_{21} & P_{22}\end{array}\right] \begin{gathered}N I\end{gathered}$

$$
X_{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
9 & 0 & 0
\end{array}\right] \begin{gathered}
I \\
N I
\end{gathered}
$$

$$
P=\left[\begin{array}{ll}
0.2 & 0.1 \\
0.8 & 0.9
\end{array}\right]
$$

a) $P X_{0}=\left[\begin{array}{ll}0.2 & 0.1 \\ 0.8 & 0.9\end{array}\right]\left[\begin{array}{ll}100 \\ 900\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 8 & 9 \\ 89\end{array}\right] \begin{gathered}I \\ N I\end{gathered}=X_{1}$

Next week, 110 mice will be infected.
b)

$$
\begin{aligned}
& P\left[P x_{0}\right]=P X_{1} \rightarrow P^{2} X_{0} \\
& =\left[\begin{array}{ll}
0.2 & 0.1 \\
0.8 & 0.9
\end{array}\right]\left[\begin{array}{ll}
1 & 10 \\
8 & 90
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
889
\end{array}\right] \quad \begin{array}{l}
\text { In } 2 \text { weeks, } 111 \text { mice will be } \\
\text { infected. }
\end{array} \\
& =X_{2}
\end{aligned}
$$

CREATED bY SHANNON MARTIN MYERS
c) In 10 weeks, we d just use $P^{10} x_{0}$

```
octave:2> P = [0.2 0.1; 0.8 0.9]
P =
    0.20000 0.10000
    0.80000 0.90000
octave:3> X0 = [100; 900]
X0 =
    100
900
octave:4> P*X0
ans =
    110
    890
octave:5> P^2*X0
ans =
    111.00
    8 8 9 . 0 0
octave:6> P^10*X0
ans =
    111.11
    88.8
```

Example 10: It has been claimed that the best predictor of today's weather is yesterday's weather. Suppose that in San Diego, if it rained yesterday, then there is a 20% chance of rain today, and if it did not rain yesterday, then there is a 90% chance of no rain today.
a. Find the transition matrix describing the rain probabilities.

$$
P=\left[\begin{array}{cc}
R & -. \\
.2 & -. \\
.8 & .9
\end{array}\right]_{N R} \quad X_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \begin{aligned}
& R \\
& N R
\end{aligned}
$$

b. If it rained Sunday, what is the chance of rain on Tuesday?

On Tuesday, there's a 12% chance of rain.
c. If it did not rain on Wednesday, what is the chance of rain on Saturday?

$$
\left(\left[\begin{array}{l}
0.20 .1 \\
0.80 .9
\end{array}\right]\right)^{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0.111 \\
0.89
\end{array}\right]
$$

on Saturday,
there's an 118 chance of rain.
d. If the probability of rain today is 30%, what is the chance of rain tomorrow?

$$
\left[\begin{array}{ll}
0.20 .1 \\
0.80 .9
\end{array}\right]\left[\begin{array}{l}
0.3 \\
0.7
\end{array}\right]=\left[\begin{array}{ll}
1.81 \\
-87
\end{array}\right]
$$

There would be a 13$]$ chance of rain tomorrow.
2.3: The Inverse of a Matrix

Learning Objectives

1. Find the inverse of a matrix (if it exists)
2. Use properties of inverse matrices
3. Use an inverse matrix to solve a system of linear equations
4. Encode and decode messages
5. Elementary Matrices
6. LU-Factorization

DEFINITION OF THE INVERSE OF A MATRIX
An $n \times n$ matrix A is invertible or nonsinguar when there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n}
$$

where I_{n} is the \qquad identity matrix of order n. The matrix B is called the ((multiplicative) inverse of A. A matrix that does not have an inverse is called noninvertible or \qquad singular
*Nonsquare matrices do not have \qquad inverses

Example 1: For the matrices below, show that B is the inverse of A.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & -1 \\
-1 & 2
\end{array}\right] B=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] J \quad B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] /
\end{aligned}
$$

THEOREM 2.7: UNIQUENESS OF AN INVERSE
If A is an invertible matrix, then its inverse is unique. The inverse of A is denoted A^{-1}.
Proof: Since A is invertible we know $\exists a B \rightarrow A B=I=B A$. Suppose

$$
\begin{aligned}
& \exists a C \rightarrow A C=I=C A . \\
& C(A B)=C I \\
& (C A) B=C
\end{aligned} \rightarrow I B=C \quad B=C .
$$

Let A be a square matrix of order n.

1. Write the $n \times 2 n$ matrix that consists of the given matrix A on the left and the $n \times n$ identity_ matrix I_{n} on the right to obtain $\left[A I_{n}\right]$. This process is called adjoining
2. If possible, row reduce \qquad to In using elementary row operations on the entire matrix $\left[A I_{n}\right]$. The result will be the matrix $\left[I_{n} A^{-1}\right]$ If this is not possible, then A is noninvertible (or singular
3. Check your work by multiplying to see that $A A^{-1}=A^{-1} A=I_{n}$.

Example 2: Find the inverse of the matrix (if it exists), by solving the matrix equation $A X=I$.

$$
\begin{aligned}
& X=A^{-1} \\
& \begin{aligned}
& {\left[\begin{array}{ll}
A & I_{2}
\end{array}\right]=} {\left[\begin{array}{cc|cc}
12 & 3 & 1 & 0 \\
5 & -2 & 0 & 1
\end{array}\right] } \\
&-5 R 1+12 R 2 \rightarrow R 2 \\
& {\left[\begin{array}{cc|cc}
12 & 3 & 1 & 0 \\
0 & -39 & -5 & 12
\end{array}\right] }
\end{aligned} \\
& 13 R 1+R 2 \rightarrow R 1 \\
& {\left[\begin{array}{cccc}
156 & 0 & 8 & 12 \\
0 & -39 & -5 & 12
\end{array}\right]} \\
& \frac{1}{348} R 1 \rightarrow R 1 \\
& =\left[I_{n} A^{-1}\right] \\
& \text { CREATED BY SHANNON MARTIN MYERS }
\end{aligned}
$$

Example 3: Find the inverse of the matrix (if it exists).
a. $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -3\end{array}\right]$
b. $\quad A=\left[\begin{array}{ccc}10 & 5 & -7 \\ -5 & 1 & 4 \\ 3 & 2 & -2\end{array}\right]$
$\left[A \mid I_{3}\right]=\left[\begin{array}{ccc|ccc}10 & 5 & -7 & 1 & 0 & 0 \\ -5 & 1 & 4 & 0 & 1 & 0 \\ 3 & 2 & -2 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc|ccc}10 & 5 & -7 & 1 & 0 & 0 \\ 0 & 7 & 1 & 2 & 2 & 0 \\ 3 & 2 & -2 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc|ccc}10 & 5 & -7 & 1 & 0 & 0 \\ 0 & 7 & 1 & 2 & 0 \\ 0 & 5 & 1 & -3 & 0 & 10\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
10 & 5 & -7 & 1 & 0 & 0 \\
0 & 7 & 1 & 1 & 20 \\
0 & 0 & 2 & -26 & -10 & 70
\end{array}\right]} \\
& \frac{1}{2} R 3 \rightarrow R_{3} \\
& \downarrow \\
& {\left[\begin{array}{ccc|ccc}
10 & 5 & -7 & 1 & 0 & 0 \\
0 & 7 & 1 & 1 & 2 & 0 \\
0 & 0 & 1 & -13 & -5 & 35
\end{array}\right]} \\
& -R_{3}+R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{ccc|ccc}
10 & 5 & -7 & 1 & 0 & 0 \\
0 & 7 & 0 & 14 & 7 & -35 \\
0 & 0 & 1 & -13 & -5 & 35
\end{array}\right]} \\
& R 1+7 R 3 \rightarrow R 1 \\
& {\left[\begin{array}{ccc|ccc}
10 & 5 & 0 & -90 & -35 & 245 \\
0 & 7 & 0 & 14 & 7 & -35 \\
0 & 0 & 1 & -13 & -5 & 35
\end{array}\right]} \\
& \frac{1}{7} R 2 \rightarrow R 2 \\
& \left.\right] \\
& -5 R 2+\mathrm{RI}_{1} \rightarrow \mathrm{R1} \\
& {\left[\begin{array}{ccc|ccc}
10 & 0 & 0 & -100 & -40 & 270 \\
0 & 1 & 0 & 2 & 1 & -5 \\
0 & 0 & 1 & -13 & -5 & 35
\end{array}\right]} \\
& \frac{1}{10} R 1 \rightarrow R 1 \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -10 & -4 & 27 \\
0 & 1 & 0 & 2 & 1 & -5 \\
0 & 0 & 1 & -13 & -5 & 35
\end{array}\right]} \\
& =\left[\begin{array}{l|l}
I_{3} & A^{-1}
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{ccc}
-10 & -4 & 27 \\
2 & 1 & -5 \\
-13 & -5 & 35
\end{array}\right]
\end{aligned}
$$

THEOREM 2.8: PROPERTIES OF INVERSE MATRICES
If A is an invertible matrix, k is a positive integer, and c is a nonzero scalar, then A^{-1} invertible and the following are true.
$B A A^{-1}=I A^{k} A^{\prime} c A$, and A^{T} are 1. $\left(A^{-1}\right)^{-1}-A$

Proof:
Since A is invertible, we know $\exists B \ni A B=B A=I$. So $B=A^{-1}$ and $B A=A^{-1} A=I$. So A is the inverse of A^{-1}.//

$$
\begin{aligned}
& \text { 2. }\left(A^{k}\right)^{-1}=\underbrace{A^{-1} \cdot A^{-1} \cdot A^{-1} \cdots A^{-1}=\left(A^{-1}\right)^{k}}_{\text {K times }} \\
& \text { 3. }(c A)^{-1}=\frac{1}{c} A^{-1} \\
& \text { Proof: } A)\left(\frac{1}{C} A^{-1}\right)=\left(C \cdot \frac{1}{C}\right)\left(A A^{-1}\right)=1 I_{n}=I_{n} / \\
& \left(\frac{1}{C} A^{-1}\right)(c A)=\left(\frac{1}{C} \cdot C\right)\left(A^{-1} A\right)=1 I_{n}=I_{n} J \\
& \text { 4. }\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{\top}
\end{aligned}
$$

THEOREM 2.9: THE INVERSE OF A PRODUCT
If A and B are invertible matrices of order n, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

$$
\begin{aligned}
(A B)\left(B^{-1} A^{-1}\right) & =A\left(B B^{-1}\right) A^{-1} & \left(B^{-1} A^{-1}\right)(A B) & =B^{-1}\left(A^{-1} A\right) B \\
& =A I_{n} A^{-1} & & =B^{-1} I_{n} B \\
& =A A^{-1} & & =B^{-1} B \\
& =I_{n} 1 & & =I_{n} /
\end{aligned}
$$

Example 4: Use the inverse matrices below for the following problems.
$A^{-1}=\left[\begin{array}{rr}-\frac{2}{7} & \frac{1}{7} \\ \frac{3}{7} & \frac{2}{7}\end{array}\right] \quad B^{-1}=\left[\begin{array}{cc}\frac{5}{11} & \frac{2}{11} \\ \frac{3}{11} & -\frac{1}{11}\end{array}\right]$
a. $(A B)^{-1}=B^{-1} A^{-1}$

$$
\begin{aligned}
& =\frac{B A}{\left[\begin{array}{cc}
5 / 11 & 7 / 11 \\
3 / 11 & -1 / 11
\end{array}\right]\left[\begin{array}{ll}
-2 / 7 & 1 / 7 \\
3 / 7 & 2 / 7
\end{array}\right]} \\
& =\left[\begin{array}{ll}
-4 / 77 & 9 / 77 \\
-9 / 77 & 1 / 77
\end{array}\right]
\end{aligned}
$$

b. $\left(A^{T}\right)^{-1}$

c. $(7 A)^{-1}=\frac{1}{7} A^{-1}$
$=\frac{1}{7}\left[\begin{array}{cc}-2 / 1 & 1 / 7 \\ 3 / 7 & 2 / 7\end{array}\right]$.

THEOREM 2.10: CANCELLATION PROPERTIES

If C is an invertible matrix, then the following properties hold true.

1. If $A C=B C$ then $A=B$ Right cancellation property

Proof:
$A C C^{-1}=B C C^{-1} \quad[C$ is invert tible]
$A I=B I$

$$
A=B \quad /
$$

2. If $C A=C B$ then $A=B$.

Left cancellation property

If A is an invertible matrix, then the system of linear equations $A \mathbf{x}=\mathbf{b}$ has a unique solution given by $\mathbf{x}=A^{-1} \mathbf{b}$.

Proof:

$$
\begin{aligned}
& \text { Proof: } \\
& A^{-1} A \vec{x}=A^{-1} \vec{b} \quad \text { [A is invertible] } \\
& I \vec{x}=A^{-1} b \\
& \vec{x}=A^{-1} \vec{b} \\
& A^{-1} \text { is unique [Thm 2.7]. Suppose } \exists \vec{c} \rightarrow \vec{x}=A^{-1} \vec{c} \text {. So, } \\
& A \vec{x}=A A^{-1} \vec{c} \\
& A \vec{x}=I \vec{c}
\end{aligned}
$$

A Cryptogram is a message written according to a secret code. Suppose we assign a number to each letter in the alphabet.

$\mathbf{0}$	-	14	N
$\mathbf{1}$	A	15	O
2	B	16	P
3	C	17	Q
4	D	18	R
$\mathbf{5}$	E	19	S
6	F	20	T
7	G	21	U
8	H	22	V
9	I	23	W
10	J	24	X
11	K	25	Y
12	L	26	Z
13	M		

Example 5: Write the encoded row matrices of size 1×3 for the message TARGET IS HOME.

$$
\begin{aligned}
& \vec{r}_{1}=\left[\begin{array}{lll}
20 & 1 & 18
\end{array}\right] \\
& \vec{r}_{2}=\left[\begin{array}{lll}
7 & 5 & 20
\end{array}\right] \\
& \vec{r}_{3}=\left[\begin{array}{lll}
0 & 9 & 19
\end{array}\right] \\
& \vec{r}_{4}=\left[\begin{array}{lll}
0 & 8 & 15
\end{array}\right] \\
& \vec{r}_{5}=\left[\begin{array}{lll}
13 & 5 & 0
\end{array}\right]
\end{aligned}
$$

Example 6: Use the following invertible matrix to encode the message TARGET IS HOME.

$$
\mathbf{3 \times 3}=\left[\begin{array}{rrr}
1 & -2 & -2 \\
-1 & 1 & 3 \\
1 & -1 & -4
\end{array}\right]
$$

$$
\vec{r}_{1} A=\left[\begin{array}{lll}
20 & 1 & 18
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & -2 \\
-1 & 1 & 3 \\
1 & -1 & -4
\end{array}\right]=\left[\begin{array}{lll}
37 & -57 & -109
\end{array}\right]=\vec{d} .
$$

$$
\vec{r}_{2} A=\left[\begin{array}{lll}
22 & -29 & -79
\end{array}\right]=\vec{d}_{2}
$$

$$
\vec{r}_{3} A=\left[\begin{array}{ccc}
10 & -10 & -49
\end{array}\right]=\vec{d}_{3}
$$

$$
\vec{r}_{4} A=\left[\begin{array}{lll}
7 & -7 & 36
\end{array}\right]=\vec{d}_{4}
$$

$$
\vec{r}_{5} A=\left[\begin{array}{lll}
8 & -21 & -11
\end{array}\right]=\vec{d}_{5}
$$

Example 7: How would you decode a message?
$\vec{r}_{i} A=\vec{d}_{i}$ to encode
$r_{i}=d_{i} A^{-1}$ to decode

$$
i=1,2,3,4,5
$$

$$
\left[\begin{array}{ccccc}
37 & -57 & -109 & 22 & -29 \\
-79 & 10 & -10 & -49 & 7 \\
-7 & 36 & 8 & -21 & -11
\end{array}\right.
$$

An $n \times n$ matrix is called an elementary matrix when it can be obtained from the
\qquad matrix \qquad In bra singe elementary \qquad Bo operation.

Example 8: Identify the matrices that are elementary below.

$$
A=\left[\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right]
$$

$\underset{\rightarrow}{B}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]$

$$
C=\left[\begin{array}{rr}
1 & 3 \\
0 & 1 \\
-1 & -3
\end{array}\right]
$$

$-2 R Z$ from I_{3}
$+R 3$ from I_{3}
not square
ye o II

THEOREM 2.12: REPRESENTING ELEMENTARY ROW OPERATIONS
Let E be the \qquad elemontey matrix obtained by performing an elementary row operation on \square Tm.

If that same elementary row operation is performed on an \qquad $m \times n$ matrix A, then the resulting matrix is given by the product \qquad EA .

Example 9: Given A and C below

$$
A=\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0 & 4 & -3 \\
0 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right]
$$

find an elementary matrix E such that $E A=C$.

$$
\begin{aligned}
& E A=c \\
& {\left[\begin{array}{ccc}
e_{11} e_{12} e_{13} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & -3 \\
0 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right] }=\left[\begin{array}{ccc}
0 & 4 & -3 \\
0 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right] \\
&-e_{11}=0 \rightarrow e_{11}=e_{13} \\
& 2 e_{11}+e_{12}+2 e_{13}--3 \rightarrow e_{12}-\frac{1}{2}\left(3 e_{11}-3\right) \\
&-3 e_{11}+2 e_{12}\left.=-3 \rightarrow\left[\begin{array}{lll}
e_{12}=\frac{1}{2}(3-3) & -3)=0 \\
e_{13}=1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\right]
\end{aligned}
$$

$$
>2 e_{11}+\frac{1}{2}\left(3 e_{11}-3\right)+2 e_{11}=4
$$

$$
4 e_{11}+\frac{3}{2} e_{11}-\frac{3}{2}=4
$$

$$
\begin{aligned}
\frac{11}{2} e_{11} & =\frac{11}{2} \\
e_{11} & =1
\end{aligned}
$$

$$
I_{3}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

Example 10: Find a sequence of elementary matrices that can be used to write the matrix in row-echelon form.
Equivalent matrix to A

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
0 & 3 & -3 & 6 \\
1 & -1 & 2 & -2 \\
0 & 0 & 2 & 2
\end{array}\right] \\
& {\left[\begin{array}{cccc}
1 & -1 & 2 & -2 \\
0 & 3 & -3 & 6 \\
0 & 0 & 2 & 2
\end{array}\right]} \\
& \begin{array}{l}
{\left[\begin{array}{cccc}
1 & -1 & 2 & -2 \\
0 & -1 & 2 \\
0 & 0 & 2 & 2
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & -1 & 2 & -2 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]}
\end{array} \\
& R_{1} \mapsto R_{2} \\
& \frac{1}{3} R 2 \\
& E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \frac{1}{2} R 3 \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 12
\end{array}\right]
\end{aligned}
$$

Furthermore,

$$
A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} B
$$

Let A and B be $m \times n$ matrices. Matrix B is row-equivalent to A when there exists a finite number of elementary matrices, \qquad $E_{1}, E_{2}, \ldots, E_{k}$ such that

$$
B=E_{x} E_{k-1} E_{k-2} \cdots E_{2} E_{1} A
$$

THEOREM 2.13: ELEMENTARY MATRICES ARE INVERTIBLE
If E is an elementary matrix, then E^{-1} exists and is an \qquad elementary \qquad matrix.

Example 11: Find the inverse of the elementary matrix.
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \quad$ Hamm ... to get E, on I_{3} we computed $-3 R 2+R 3 \rightarrow R 3$. So to undo it, we compute $3 R 2+R 3 \rightarrow R 3$.

$$
E^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]
$$

In general:
The sign changes on the entry from the row that didn't Change and all entries in thecangededios are e multiplied by the reciprocal THEOREM 2.14: EQUIVALENT CONDITIONS of the row that changed in E.
If A is an $n \times n$ matrix, then the following statements are equivalent.

1. A is \qquad invertible .
2. $A \mathbf{x}=\mathbf{b}$ has a unique
\qquad solution for every \qquad $n \times 1$ column matrix \qquad b
3. $A \mathbf{x}=\mathbf{0}$ has only the \qquad trivial solution.
4. A is row-equivalertito In.
5. A can be written as the product of elementary matrices.
3×3 lower a matrix

$$
\left[\begin{array}{lll}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

3×3 upper Δ matrix

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]
$$

DEFINITION OF $L U$-FACTORIZATION
If the $n \times n$ matrix A can be written as the product of a lower triangular matrix L and an upper triangular matrix U, then $A=L U$ is an $L U$-factorization of A.

Example 12: Solve the linear system $A \mathbf{x}=\mathbf{b}$ by

1. Finding an $L U$-factorization of the coefficient matrix A.
2. Solving the lower triangular system $L \mathbf{y}=\mathbf{b}$.
3. Solving the upper triangular system $U \mathbf{x}=\mathbf{y}$.
row ops $2,1,1$. 1

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Elementary matrices

$$
\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \\
-2 & 1 & -1 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
& \downarrow &
\end{array}\right]
$$

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{1}^{-1}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \\
0 & 5 & -2 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad \leftrightarrow \quad \begin{aligned}
& -\frac{1}{3} R 1+\frac{1}{3} R 2 \rightarrow R 2
\end{aligned}
$$

CREATED BY SHANNON MARTIN MYERS
\downarrow
Sc

$$
\begin{aligned}
& \begin{array}{c}
\left.\begin{array}{cc}
2 x_{1} & =4 \\
-2 x_{1}+x_{2}-x_{3} & =-4 \\
6 x_{1}+2 x_{2}+x_{3} & =15 \\
\text { 1) } & =\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-2 & 1 & -1 & 0 \\
\mathbf{6} & 2 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \\
\downarrow
\end{array}\right]
\end{array} \\
& \text { 1) }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \\
0 & 5 & -2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]} \\
& -3 R 3+R 1 \rightarrow R 3 \\
& E_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & -3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \\
0 & 5 & -2 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]} \\
& E_{3}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 / & 0 & -1 / 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \underset{\text { inverse } R 3: \frac{1}{5} R 3+2 R 2}{-2 R 2+5 R 3 \rightarrow R 3}+E_{4}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 & 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \begin{array}{ll}
11 \\
U
\end{array} \\
& E_{u}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & z / 5 & y_{5} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{4} E_{3} E_{2} E_{1} A=U \\
& A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} U}_{L} \\
& A=L U \\
& A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{3} & \frac{1}{3} & 0 & 0 \\
\frac{1}{3} & -\frac{2}{15} & -\frac{1}{23} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \\
0 & 5 & -2 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

check:

$$
\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \\
-2 & 1 & -1 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& \left.E_{1}^{E_{1}^{-1}} \begin{array}{llll}
0 & E_{2}^{-1} & E_{3}^{-1} E_{n}^{-1} \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 \\
-1 / 3 & 1 / 3 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{3} & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \\
& \qquad=\left[\begin{array}{ccccc}
1 / 3 & 0 & -\frac{1}{3} & 0 \\
-1 / 3 & 1 / 3 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{3}{5} & 1 / 5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& Y
\end{aligned}
$$

Jo re Since we

$$
\begin{aligned}
& \text { Since we, } \\
& R 1 \leftrightarrow R S, \text { for } L, \rightarrow \\
& \text { we need to } R 1 \in R 3 \\
& \text { for b to get } \vec{y}
\end{aligned} \left\lvert\,\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{3} & \frac{1}{3} & 0 & 0 \\
\frac{1}{3} & -\frac{2}{1 s} & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=L\right.
$$

$R 1$ and R^{3}
of

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 3 & 1 / 3 & 0 & 0 \\
1 / 3 & -2 / 15 & -1 / 15 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-4 \\
4 \\
-1
\end{array}\right]
$$

3) $u \vec{x}=\frac{\vec{y}}{}$

$$
\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \\
0 & 5 & -2 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
15 \\
3 \\
9 \\
1
\end{array}\right]
$$

$$
\begin{array}{ll}
y_{1}=15 & x_{1}=2 \\
y_{2}=3 & x_{2}=1 \\
y_{3}=9 & x_{3}=1 \\
y_{4}=-1 & x_{4}=1
\end{array}
$$

$$
\begin{aligned}
& \text { Suppore } E_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 0 & 0 & 2
\end{array}\right], \quad{\overrightarrow{I_{4}}}^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& 4 R 1+2 R 4 \rightarrow R 4
\end{aligned}
$$

to get E_{1}^{-1} a)

$$
\begin{aligned}
& E_{1}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{-4}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right] \\
& E_{1}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-2 & 0 & 0 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

b) mult by reciprocal of coeff in changingrow
domain $\rightarrow V$ is R
2.5: Linear Transformations p Wis R
 input output is y Learning Objectives codomain

1. Find the preimage and image of a function
2. Determine if a function is a linear transformationWrite and use a stochastic matrix

IMAGES AND PREIMAGES OF FUNCTIONS
In this section we will learn about functions that \qquad map a vector space \qquad onto a vector space \qquad . This is denoted by $T: \sqrt{W}$. The standard function terminology is used for such functions. \qquad is called the domain \qquad of \qquad T and \qquad W is called the Codronain of \qquad T . If \mathbf{v} is in V, and \mathbf{w} in W such that $T(\vec{v})=\vec{w}, \vec{v}$ is called the \qquad of $\overrightarrow{\boldsymbol{w}}$ under \qquad T . The set of all images of vectors in V is called the \qquad range fT , and the set of all \mathbf{v} in V such that \qquad $T(\vec{v})=\vec{\omega}$ is called the
\qquad domain of T.

Example 1: Use the function to find (a) the image of \mathbf{v} and (b) the preimage of \mathbf{w}.

$$
T\left(v_{1}, v_{2}\right)=\left(2 v_{2}-v_{1}, v_{1}, v_{2}\right), \mathbf{v}=(0,6), \mathbf{w}=(3,1,2)
$$

$T: R^{2} \rightarrow R^{3}$
a)
$T(0,6)=(2(6)-0,0,6)$
$(12,0,6)$ is the image of \vec{v}

$$
=(12,0,6)
$$ under T.

b) $T\left(v_{1}, v_{2}\right)=(3,1,2) \rightarrow \vec{v}=(1,2)$ is the preimage

$$
\begin{aligned}
2 v_{2}-v_{1} & =3 \\
v_{1} & =1 \\
v_{2} & =2
\end{aligned}
$$ of $\vec{\omega}$ under T.

Let V and W be vector spaces. The function $T: V \rightarrow W$ is called a linear transformation of \qquad into W when the following two properties are true for all \mathbf{u} and \mathbf{v} in V and any scalar c.

1. $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$
2. $T(c \vec{u})=c T(\vec{u})$

A linear transformation is operation preserving because the same result occurs whether you perform the operations of addition and scalar multiplication \qquad before or \qquad applying the \qquad linear transformation . Although the same symbols denote the vector operations in both V and W, you should note that the operations may be different.

Example 2: Determine whether the function is a linear transformation.

$$
\text { a. } \begin{aligned}
& T: R^{3} \rightarrow R^{3}, T(x, y, z)=(x+1, y+1, z+1) \\
& \vec{u}=(1,2,3) \vec{v}=(4,5,6) \\
& T(\vec{u}+\vec{v}) \stackrel{?}{=} T(\vec{u})+T(\vec{v}) \\
& T(5,7,9) \stackrel{?}{=}(2,3,4)+(5,6,7) \\
&(6,8,10) \stackrel{?}{=}(7,9,11)
\end{aligned}
$$

No!
T is not a linear tharstormation
b. $T: M_{2,2} \rightarrow R, T(A)=a+b+c+d$

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], B=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right], k$ is a scalar

$$
\begin{aligned}
T(A+B) & =T\left(\left[\begin{array}{c}
a+c+b+f \\
c+g d+h
\end{array}\right]\right)=(a+e)+(b+f)+(c+g)+(d+h) \\
& =(a+b+c+d)+(e+f+g+h) \\
& =T(A)+T(B) l
\end{aligned}
$$

$$
\begin{aligned}
T(k A) & =T\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right] \\
& =k a+k b+k c+k d \\
& =k(a+b+c+d) \\
& =k T(A) . l
\end{aligned}
$$

yes, T is a linear transformation.
Exam I only goes through 2.4
2. $T(-\vec{v})=-T(\vec{v})$

$$
\left.\begin{aligned}
& \text { 3. } \\
& \text { Proof: } \\
& T(\vec{u}-\vec{v})=T(\vec{u}-\vec{v})=T(-\vec{v})) \\
&=T(\vec{u})+T(-\vec{v}) \\
&=T(\vec{u})+T[-1(\vec{v})]
\end{aligned} \quad \rightarrow \quad \right\rvert\, r(\vec{u})+(-T(\vec{v}))
$$

4. $n \vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$

$$
\text { then } T(\vec{v})=T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)=c_{1} T\left(\vec{v}_{1}\right)+c_{2} T\left(\vec{v}_{2}\right)+\cdots+c_{n} T\left(v_{n}\right)
$$

Example 3: Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation such that $T(1,0,0)=(2,4,-1)$,
$T(0,1,0)=(1,3,-2)$, and $T(0,0,1)=(0,-2,2)$. Find the indicated image.

$$
\begin{aligned}
T(2,-1,0) & (2,-1,0]=2(1,0,0)-1(0,1,0)+0(0,0,1) \\
T[(2,-1,0)] & =\frac{2}{2} T[(1,0,0)]-1 T[(0,1,0)]+0 T[(0, p, 1)] \\
& =2(2,4,-1)-(1,3,-2)+0(0,-2,2) \\
& =(4,8,-2)-(1,3,-2) \\
& =(3,5,0)
\end{aligned}
$$

THEOREM 2.16: THE LINEAR TRANSFORMATION GIVEN BY A MATRIX
Let A be an $m \times n$ matrix. The function T defined by

$$
T(\vec{v})=A \vec{v}
$$

is a linear transformation from R^{n} into R^{m}. In order to conform to matrix multiplication with an $m \times n$ matrix, $n \times 1$ matrices represent the vectors in R^{n} and $m \times 1$ matrices represent the vectors in R^{m}.

$$
\mathrm{n} \mathbf{n} \times \mathbf{v}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
m \times n & a_{m 1} & \cdots
\end{array} a_{m n}\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} v_{1}+ & \cdots & +a_{1 n} v_{n} \\
\vdots & \ddots & \vdots \\
a_{m 1} v_{1}+ & \cdots & +a_{m n} v_{n}
\end{array}\right]\right.
$$

Example 4: Define the linear transformation $T: R^{n} \rightarrow R^{m}$ by $T(\mathbf{v})=A \mathbf{v}$. Find the dimensions of R^{n} and
 R^{m}.

$$
\begin{gathered}
\text { a. } A=\left[\begin{array}{rr}
1 & 2 \\
-2 & 4 \\
-2 & 2
\end{array}\right] \\
T: R^{n} \rightarrow R^{m} \rightarrow T: R^{2} \rightarrow R^{3}
\end{gathered}
$$

b. $A=\left[\begin{array}{llll}1 & 3 & -1 & 0 \\ 0 & 1 & -2 & 1 \\ 2 & 1 & -4 & 1\end{array}\right]$

Example 5: Consider the linear transformation from Example 4, part a.
a. Find $T(2,4)$

$$
\begin{aligned}
& \vec{v}=(2,4) \\
& T: R^{2} \rightarrow R^{3} \\
& T(2,4)=A(2,4) \\
&=\left[\begin{array}{cc}
1 & 2 \\
-2 & 4 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

CREATED BY SHANNON MARTIN MYERS

$$
=\left[\begin{array}{l}
10 \\
12 \\
4
\end{array}\right]
$$

$$
T(\vec{v})=\left(v_{1}+2 v_{2},-2 v_{1}+4 v_{2},-2 v_{1}+2 v_{2}\right)
$$

b. Find the preimage of $(-1,2,2)$

$$
\begin{aligned}
& T(\vec{v})=A \vec{v}=\vec{\omega} \\
& \left\{\left[\begin{array}{ll}
1 & 2 \\
-2 & u \\
-2 & 2
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]\right. \\
& \left\{\begin{array}{cc|c}
1 & 2 & -1 \\
-2 & 4 & 2 \\
-2 & 2 & 2
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ll|c}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \left\{\begin{array}{c}
v_{1}+2 v_{2}=-1 \\
-2 v_{1}+4 v_{2}=2 \\
-2 v_{1}+2 v_{2}=2
\end{array}\right. \\
& T(-1,0)=(-1,2,2)
\end{aligned}
$$

c. Explain why the vector $(1,1,1)$ has no preimage under this transformation.

$$
\begin{aligned}
{\left[\begin{array}{cc|c}
1 & 2 & 1 \\
-2 & 1 & 1 \\
-2 & 2 & 1
\end{array}\right] } & \xrightarrow{\text { ref }}\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
V_{1} & =1 \\
V_{2} & =0 \\
0 & =-1 \text { false }
\end{aligned}
$$

$\vec{w}=(1,1,1) \in$ of the codomain, but not the range of T.

PART 2: DETERMINANTS, GENERAL VECTOR SPACES, AND MATRIX REPRESENTATIONS OF LINEAR TRANSFORMATIONS
3.1: THE DETERMINANT OF A MATRIX

Learning Objectives

1. Find the determinant of a 2×2 matrix
2. Find the minors and cofactors of a matrix
3. Use expansion by cofactors to find the determinant of a matrix
4. Find the determinant of a triangular matrix
5. Use elementary row operations to evaluate a determinant
6. Use elementary column operations to evaluate a determinant
7. Recognize conditions that yield zero determinants

Every \qquad square matrix can be associated with a real number called its determinant. Historically, the use of determinants arose from the recognition of special \qquad that occur in the Solutions of systems of linear equations.

DEFINITION OF THE DETERMINANT OF A 2 x 2 MATRIX
The \qquad determinant of the matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$ is given by $\operatorname{det}(A)=\mathbf{a}_{11} \boldsymbol{a}_{22}-\boldsymbol{a}_{21} \mathbf{a}_{12}$.

**Note: In this text, \qquad $\operatorname{det}(A)$ and \qquad $|A|$ are used interchangeably to represent the determinant of a matrix. In this context, the vertical bars are used to represent the \qquad determinant of a matrix as opposed to the \qquad absolute value.
Example 1:
a. Find $\operatorname{det}(A)$ and $\operatorname{det}(B)$.

$$
\begin{array}{rlrl}
A=\left[\begin{array}{ll}
-1 & 4 \\
11 & 7
\end{array}\right] & & B=\left[\begin{array}{cc}
21 & -3 \\
-6 & 10
\end{array}\right] \\
\operatorname{det}(A) & =(-1)(7)-(11)(4) & \operatorname{det}(B) & =(21)(10)-(-6)(-3) \\
& =-51 & & =210-18 \\
\text { created by shannon matin Myers } & & =192
\end{array}
$$

Check this out...

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{rr}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { are the opp to the } \\
& \text { and signed to } \\
& \text { assigns }
\end{aligned}
$$

b. Find A^{-1} and B^{-1}

$$
\begin{aligned}
& \begin{aligned}
A & =\left[\begin{array}{ll}
-1 & 4 \\
11 & 7
\end{array}\right] \\
A^{-1} & =\frac{1}{-51}\left[\begin{array}{cc}
7 & -4 \\
-11 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
-7 / 51 & 4 / 51 \\
11 / 51 & 1 / 51
\end{array}\right]
\end{aligned} \\
& \text { DEFINITION OFWINORS AND COFACTORS OF A MATRIX }
\end{aligned}
$$

$$
B=\left[\begin{array}{ll}
21 & -3 \\
-6 & 10
\end{array}\right]
$$

If A is a \qquad matrix, then the \qquad $M_{i j}$ of the element $a_{i_{j}}$ is the determinant of the matrix obtained by deleting the throw and the th column of A. The \qquad cofactor $C_{i j \text { is given by } C_{y}}=(-1)^{i+j} M_{i j}$.

Example 2: Find the minor and cofactor of a_{12}.and b_{13}.
a. $A=\left[\begin{array}{lll}a_{11} & a_{2} & a_{13} \\ a_{21} & a_{2} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ $\begin{aligned} \longrightarrow \quad M_{12} & =\operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]=a_{21} a_{33}-a_{31} a_{23} \\ C_{12} & =(-1)^{1+2} M_{12}=-\left(a_{21} a_{33}-a_{31} a_{23}\right) \\ & \operatorname{or}\left[\left(a_{31} a_{23}-a_{21} a_{33}\right)\right.\end{aligned}$
b.

$$
\begin{aligned}
& C_{13}=(-1)^{1+3} M_{13} \\
& C_{13}=\operatorname{det}\left[\begin{array}{cc}
1 & -1 \\
3 & -2
\end{array}\right] \\
& \left.C_{13}=-3\right]
\end{aligned}
$$

If A is a Square matrix of order $n>2$, then the determinant of A is the Sum of the entries in the first row of A multiplied by their respective_. factors. That is,

$$
\operatorname{det}(A)=|A|=\sum_{j=1}^{n} a_{1 j} C_{1 j}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

Example 3: Confirm that, for 2×2 matrices, this definition yields $|A|=a_{11} a_{22}-a_{21} a_{12}$.

$$
\begin{aligned}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12} \\
& =a_{11}(-1)^{1+1} a_{22}+a_{12}(-1)^{1+2} a_{21} \\
& =a_{11} a_{22}-a_{21} a_{12}
\end{aligned}
\end{aligned}
$$

Example 4: Find $|B|$.

$$
\begin{aligned}
& B=\left[\begin{array}{rrr}
2 & -1 & 4 \\
0 & 1 & 3 \\
3 & -2 & 1
\end{array}\right] \\
& \operatorname{det}(B)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
&=2(-1)^{1+1} \operatorname{det}\left[\begin{array}{cc}
1 & 3 \\
-2 & 1
\end{array}\right]+(-1)(-1)^{1+2} \operatorname{det}\left[\begin{array}{ll}
0 & 3 \\
3 & 1
\end{array}\right]+4(-1)^{1+3} \operatorname{det}\left[\begin{array}{cc}
0 & 1 \\
3 & -2
\end{array}\right] \\
&=2(7)-1(-1)(-9)+4(-3) \\
&=14-9-12 \\
&=-7
\end{aligned}
$$

THEOREM 3.1: EXPANSION BY COFACTORS
If A be a square matrix of order n. Then the determinant of A is given by

$$
\begin{aligned}
& \operatorname{det}(A)=|A|=\sum_{j=1}^{n} a_{i j} C_{i j}=\boldsymbol{a}_{i_{1}} \mathbf{c}_{i_{1}}+\boldsymbol{a}_{i_{2}} \mathbf{C}_{i_{2}}+\ldots+\boldsymbol{a}_{i n} C_{i n} \text { (with row expansion) } \\
& \operatorname{det}(A)=|A|=\sum_{i=1}^{n} a_{i j} C_{i j}=\boldsymbol{a}_{i j} C_{i j}+\boldsymbol{a}_{2 j} C_{i j}+\ldots+\boldsymbol{a}_{0 j} \operatorname{lnj}_{n j} \text { (th column expansion) }
\end{aligned}
$$

Is there an easier way to complete the previous example?

$$
\begin{aligned}
& B=\left[\begin{array}{rrr}
t & & \\
2 & -1 & 4 \\
0 & 1 & 3 \\
3 & -2 & 1
\end{array}\right] \\
& \operatorname{det}(B)=0 \operatorname{det}\left[\begin{array}{cc}
-1 & 4 \\
-2 & 1
\end{array}\right]+\operatorname{det}\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right]-3 \operatorname{det}\left[\begin{array}{ll}
-1 & -1 \\
3 & -2
\end{array}\right] \\
& =0+(-10)-3(-1) \\
& =-7
\end{aligned}
$$

Alternative Method to evaluate the determinant of a 3×3 matrix: Copy the first and second columns of the matrix to form fourth and fifth columns. Then obtain the determinant by adding (or subtracting) the products of the six diagonals.
$B=\left[\begin{array}{rrr}2 & -1 & 4 \\ 0 & 1 & 3 \\ 3 & -2 & 1\end{array}\right]$
deft) $\cdot-7$

Bottom sum minus top sum

$$
-7-0=-7
$$

Example 5: Find $\operatorname{det}(A)$ and $\operatorname{det}(B)$.

$\begin{array}{cccccc}1 & 0 & 2 & 6 & 0 & 2 \\ 3 & - & -1 & 0 & 2 & -1 \\ 6 & -1 & 5 & 6 & -1 & 2\end{array}$

$98+0+0+144=242$

$$
242-570=-328
$$

$$
\operatorname{det}(A)=1 \operatorname{det}\left[\begin{array}{ccc}
t & - & t \\
7 & -1 & 0 \\
-1 & 2 & 5 \\
5 & -8 & 7
\end{array}\right]-0+2 \operatorname{det}\left[\begin{array}{ccc}
t & - & t \\
3 & 7 & 0 \\
6 & -1 & 5 \\
-3 & 5 & 7
\end{array}\right]-6 \operatorname{det}\left[\begin{array}{ccc}
t & - & t \\
3 & 7 & -1 \\
6 & -1 & 2 \\
-3 & 5 & -8
\end{array}\right]
$$

$$
=-2210
$$

$6(1)(11)=66 \ldots$ it turns out that the determinant of a triangular matrix is the product of the elements on the main diagonal.

$$
\begin{aligned}
\operatorname{det}(B) & =6 \operatorname{det}\left[\begin{array}{cc}
1 & 0 \\
-2 & 11
\end{array}\right]-0+0 \\
& =6(11) \\
& =66
\end{aligned}
$$

What did you notice?
see abase

THEOREM 3.2: DETERMINANT OF A TRIANGULAR MATRIX
If A is a triangular matrix of order n, then its determinant is the product of the elements on the main diagonal . That is, $\operatorname{det}(A)=|A|=a_{11} \boldsymbol{a}_{22} \boldsymbol{a}_{33} \cdots \boldsymbol{a}_{\mathrm{mn}}$

$$
\begin{array}{rlrl}
\text { Example 6: Find the values of } \lambda, \text { for which the determinant is zero. } \\
\left|\begin{array}{rr}
\lambda-1 & 1 \\
4 & \lambda-3
\end{array}\right| & =(\lambda-1)(\lambda-3)-4 & \lambda & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-1)}}{2(1)} \\
0 & =\lambda^{2}-4 \lambda+3-4 & \lambda & =\frac{4 \pm \sqrt{20}}{2} \\
0 & =\lambda^{2}-4 \lambda-1 & \lambda & =\frac{4 \pm 2 \sqrt{5}}{2} \\
\lambda_{1}=2-\sqrt{5}, \lambda_{2}=2+\sqrt{5}
\end{array} \quad \begin{array}{ll}
2 \pm \sqrt{5}
\end{array}
$$

Consider the following matrix:

$$
A=\left[\begin{array}{rrr}
-1 & 2 & 1 \\
3 & 4 & -1 \\
t & 0 & t \\
1 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A) & =1 \operatorname{det}\left[\begin{array}{cc}
2 & 1 \\
4 & -1
\end{array}\right]-0+1 \operatorname{det}\left[\begin{array}{cc}
-1 & 2 \\
3 & 4
\end{array}\right] \\
& =-6-10 \\
& =-16
\end{aligned}
$$

Now let's put the matrix into row-echelon form. In other words, row reduce to an upper triangular matrix.

$|B|=|A| \rightarrow 3 R 1+R 2 \rightarrow R 2$
 $\left[\begin{array}{ccc}-1 & 2 & 1 \\ 0 & 10 & 2 \\ 0 & 2 & 2\end{array}\right]$

What's the determinant of this matrix?
$\operatorname{det}(B)=80 \ldots 80=-5(16)$
Take a closer look at the determinants of the two matrices. Do you notice anything?

THEOREM 3.3: ELEMENTARY ROW OPERATIONS AND DETERMINANTS

Let A and B be square matrices.

1. When B is obtained from A by interchanging (swapping_) two rows of A, $|B|=-|A|$
2. When B is obtained from A by add a multiple of a row of A to another row of $A,|\boldsymbol{B}|=|A|$. To clarify, the "new" row is not scaled, but the row used to get the new row can be scaled. If the new row is scaled, you also use \#3 below.
3. When B is obtained from A by \qquad
\qquad a row of A by a nonzero constant c. $|B|=c|A|$

NOTE: Theorem 3.3 remains valid when the word "column" replaces the word "row". Operations performed on columns are called elementary column operations.

Example 7: Determine which property of determinants the equation illustrates.
a. $\left|\begin{array}{ccc}1 & -1 & 3 \\ 4 & 12 & 7 \\ 3 & -3 & 8\end{array}\right|=-\left|\begin{array}{ccc}3 & -1 & 1 \\ 7 & 12 & 4 \\ 8 & -3 & 3\end{array}\right|$

$\mathrm{Cl} \leftrightarrow \mathrm{C} 3$

Example 8: Use elementary row or column operations to find the determinant of the matrix.
$A=\left[\begin{array}{rrr}3 & 8 & -7 \\ 0 & -5 & 4 \\ 4 & 1 & 6\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 8 & -7 \\
0 & -5 & 4 \\
4 & 1 & 6
\end{array}\right] \\
& -2 R R+6 R B \rightarrow R S \\
& -4 R 1+3 R 3 \rightarrow R 3 \\
& {\left[\begin{array}{ccc}
3 & 8 & -7 \\
0 & -5 & 4 \\
0 & -29 & 46
\end{array}\right]} \\
& -29 R 2(45)(3 \rightarrow R 3 \\
& {\left[\begin{array}{ccc}
3 & 8 & -7 \\
0 & -5 & 4 \\
0 & 0 & 114
\end{array}\right]=B} \\
& \operatorname{det}(B)=3(-5)(114)=-1710 \\
& 3 \cdot 5 \operatorname{det}(A)=B / \$ \operatorname{det}(B) \\
& \operatorname{det}(A)=\frac{1}{15} \operatorname{det}(B)=\frac{-1710}{15}=-114
\end{aligned}
$$

If A is a square matrix, and any one of the following conditions is true, then $\operatorname{det}(A)=0$.

1. An entire \qquad row (or \qquad column) consists of zeros.
2. Two \qquad rows (or \qquad columns) are \qquad equal.
3. One row (or column) is a multiple of another row (or col ump).

	Cofactor Expansion		Row Reduction	
Order n	Additions	Multiplications	Additions	Multiplications
3	5	9	5	10
5	119	205	30	45
10	$3,628,799$	$6,235,300$	285	339

Example 9: Prove the property.

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right), a \neq 0, \mathrm{~b} \neq 0, \mathrm{c} \neq 0
$$

$$
\begin{aligned}
& \left.\left.=(1+a)\left|\begin{array}{cc}
1+b & 1 \\
1 & 1+c
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1 \\
1 & 1+c
\end{array}\right|+1 \right\rvert\, \begin{array}{cc}
1 & 1+b \\
1 & 1
\end{array}\right] \\
& =(1+a)[(1+b)(1+c)-1]-[(1+c)-1]+[1-(1+b)] \\
& =(1+a)(1+b)(1+c)-(1+a)-c-b \\
& =(1+a+b+a b)(1+c)-1-a-c-b \\
& =k x+c+\alpha+a c+\gamma+b c+a b+a b c-x-\alpha-b-4 \\
& =a b c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right), a, b, c \neq 0
\end{aligned}
$$

3.2: PROPERTIES OF DETERMINANTS

Learning Objectives

1. Find the determinant of a matrix product and a scalar multiple of a matrix
2. Find the determinant of an inverse matrix and recognize equivalent conditions for a nonsingular matrix
3. Find the determinant of the transpose of a matrix
4. Use Crammer's Rule to solve a system of linear equations
5. Use determinants to find area, volume, and equations of lines and planes

Example 1: Find $|A|,|B|,|A||B|,|A+B|,|A|+|B|$ and $|A B|$.

$$
A=\left[\begin{array}{rrr}
3 & 2 & 1 \\
1 & -1 & 2 \\
3 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{rrr}
2 & -1 & 4 \\
0 & 1 & 3 \\
3 & -2 & 1
\end{array}\right]
$$

THEOREM 3.5: DETERMINANT OF A MATRIX PRODUCT
If A and B are square matrices of order n, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Example 2: Find $|3 A|$ and $|3 B|$.

$$
\begin{array}{r}
A \\
2 \times 2
\end{array}=\left[\begin{array}{ll}
1 & -1 \\
3 & 10
\end{array}\right]
$$

$$
\begin{array}{r}
B \times 3 \\
3 \times 3
\end{array}\left[\begin{array}{rrr}
2 & -1 & 4 \\
0 & 1 & 3 \\
3 & -2 & 1
\end{array}\right]
$$

$$
|A|=13
$$

$$
|3 A|=\left|\begin{array}{cc}
3 & -3 \\
9 & 30
\end{array}\right|
$$

$$
\begin{aligned}
& =117 \\
& =3.3 \cdot 13
\end{aligned} \text { yep! }
$$

$$
=117
$$

\rightarrow maybe $|3 A|$

$$
\left.y p\right|^{!}=3^{2}|A|
$$

THEOREM 3.6: DETERMINANT OF A SCALAR MULTIPLE OF A MATRIX
If A is a square matrix of order n and c is a scalar, then the determinant of $|c A|$ is

$$
c^{n} \operatorname{det}(A)
$$

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\text { Pr }_{21} & \cdots & a_{22} & \cdots \\
\vdots & a_{2 n} \\
a_{n 1} & \vdots & \ddots & \vdots \\
n & \cdots & a_{n n}
\end{array}\right], \quad c A=\left[\begin{array}{cccc}
c a_{11} & c a_{12} & \cdots & c a_{1 n} \\
c a_{21} & c a_{2 n} & \cdots & c a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c a_{n 1} & c a_{n 2} & \cdots & c a_{n n}
\end{array}\right], a_{i j \in} \in R \\
& \operatorname{det}(A)=\sum_{j=1} a_{1 j} C_{1 j} \\
& \operatorname{det}(c A)=\sum_{j=1}^{n} c_{i j} j^{n-1} C_{1 j}=c a_{11} 1^{n-1} C_{11}+c a_{12} c^{n-1} C_{12}+\cdots+c a_{1 n} a_{n}^{n-1} C_{12} \\
& =\sum_{j=1}^{n} c^{n} a_{i j} C_{1 j} \\
& \rightarrow=C^{n} \operatorname{det}(A) \\
& =c^{n} \xi_{j j} C_{j}
\end{aligned}
$$

$$
\begin{aligned}
& |B|=-7 \\
& \text { IS }|3 B|=3^{3} \cdot(-7) \\
& |B B|=\left|\begin{array}{ccc}
6 & -3 & 12 \\
\overline{0} & 3 & 9 \\
9 & -6 & 3
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =3(18-108)-9(-36+27) \\
& =-270+81 \\
& =-189 \quad\left[\begin{array}{l}
3 \\
3 \\
(-7)
\end{array}\right.
\end{aligned}
$$

Example 3: Find $A^{-1},|A|,\left|A^{-1}\right|, B^{-1},\left|B^{-1}\right|$, and $|B|$.

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
-3 & 6 \\
-2 & 4
\end{array}\right] & B=\left[\begin{array}{ll}
5 & 2 \\
11 & 7
\end{array}\right] \\
|A|=-12+12=0 & |B|=35-22=113 \\
\text { SO Ais singular, } A^{-1} \text { DNA } & B^{-1}=\frac{1}{|B|}\left[\begin{array}{cc}
7 & -2 \\
-115
\end{array}\right]=\left[\begin{array}{cc}
7 / 13 & -2 / 13 \\
-11 / 3 & 5 / 13
\end{array}\right] \\
& \left|B^{-1}\right|=\frac{35}{169}-\frac{22}{169}=\frac{13}{169}=\frac{1}{13} \\
\downarrow
\end{array}
$$

THEOREM 3.7: DETERMINANT OF AN INVERTIBLE MATRIX
A square matrix A is invertible (nonsingular) if and only if $\operatorname{det}(A) \neq 0$

Example 4: Find $|A|$ and $\left|A^{-1}\right|$.

$$
A=\left[\begin{array}{ll}
-3 & 3 \\
-2 & 1
\end{array}\right]
$$

$\operatorname{dat}(A)=-3+6=3$

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{dat}(A)}=\frac{1}{3}
$$

If A is an $n \times n$ invertible matrix, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Proof: Since A is invertible, $\exists A^{-1} \ni A A^{-1}=I_{n}=A^{-1} A$, and $\operatorname{det}(A) \neq 0$. [Tum 3.1] $\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$, and $\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}\left(I_{n}\right)=1$. So $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1,{ }^{\prime}$ Chm 3.5$]$ and $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \cdot / /$

EQUIVALENT CONDITIONS FOR A NONSINGULAR MATRIX
If A is an $n \times n$ matrix, then the following statements are equivalent.

1. A is invertible \qquad .
2. $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \qquad $n \times 1$ column matrix.
3. $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
4. A is row-equivalent to I_{n}.
5. A can be written as the product of elementary_matrices.
6. $\operatorname{det}(A) \neq 0$

Example 5: Determine if the system of linear equations has a unique solution.
$x_{1}+x_{2}-x_{3}=4$
$2 x_{1}-x_{2}-x_{3}=6$
$3 x_{1}-2 x_{2}+2 x_{3}=0$

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & -1 & -1 \\
3 & -2 & 2
\end{array}\right]
$$

$\operatorname{det}(A)=-10 \neq 0, \therefore 子$ a unique solution to this system,

Example 6: Find $|A|$ and $\left|A^{T}\right|$.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
7 & 12 \\
2 & -2
\end{array}\right] \quad \operatorname{det}(A)=-14-24=-38 \\
& A^{\top}=\left[\begin{array}{cc}
1 & 2 \\
12 & -2
\end{array}\right] \quad \operatorname{det}\left(A^{\top}\right)=-14-24=-38
\end{aligned}
$$

THEOREM 3.9: DETERMINANT OF A TRANSPOSE
If A is a square matrix, then

$$
\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)
$$

Example 7: Solve the system of linear equations. Assume that $a_{11} a_{22}-a_{21} a_{12} \neq 0$;
$a_{11} x_{1}+a_{12} x_{2}=b_{1}$
(A)
$a_{21} x_{1}+a_{22} x_{2}=b_{2}$
(B)

1) Isolate x, from A and then sub. into B.
a)

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{11} x_{1}=b_{1}-a_{12} x_{2} \\
& x_{1}=\frac{b_{1}-a_{12} x_{2}}{a_{11}}
\end{aligned}
$$

$$
\begin{aligned}
x_{2}\left(a_{11} a_{22}-a_{21} a_{12}\right) & =a_{11} b_{2}-a_{21} b_{1} \\
x_{2} & =\frac{a_{n} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{21} a_{12}}
\end{aligned}
$$

2) Sub x_{2} intr eq. A

$$
\begin{aligned}
& \text { Sub } x_{2} \frac{\text { ins }}{} \text { eq. } A \\
& \left(a_{11} a_{22}-a_{21} a_{12}\right)\left(a_{11} x_{1}+a_{12}\right. \\
& a_{11} a_{22}-a_{21} a_{12}
\end{aligned}\left[\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{21} a_{12}}\right]=b_{1}
$$

b) $a_{21}\left(\frac{b_{1}-a_{12} x_{2}}{a_{11}}\right)+\frac{a_{11}}{a_{11}} x_{22} x_{2}=b_{2}$

$$
\begin{aligned}
& \frac{a_{21} b_{1}-a_{21} a_{12} x_{2}}{a_{11}}+\frac{a_{11} a_{22} x_{2}}{a_{11}}=b_{2} \\
& \frac{a_{21} b_{1}-a_{21} a_{12} x_{2}+a_{11} a_{22} x_{2}}{a_{11}}=b_{2} \\
& a_{21} b_{1}-a_{21} a_{12} x_{2}+a_{11} a_{22} x_{2}=a_{11} b_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a_{11}^{2} a_{22} x_{1}-a_{21} a_{12} a_{11} x_{1}+a_{12} a_{11} b_{2}-a_{21} a_{12} b_{1}}{a_{11} a_{22}-a_{21} a_{12}}=b_{1} \\
& x_{1}\left(a_{11}^{2} a_{22}-a_{21} a_{12} a_{11}\right)+a_{12} a_{11} b_{2}-a_{21} a_{12} b_{1}=b_{1}\left(a_{11} a_{22}-a_{21} a_{12}\right) \\
& \dot{x}_{1}=\frac{a_{21} a_{12} b_{1}+b_{1} a_{11} a_{22}-b_{1} a_{12} a_{12}-a_{11} a_{12} b_{2}}{a_{11}\left(a_{11} a_{22}-a_{21} a_{12}\right)} \\
& x_{1}=\frac{a_{11}\left(b_{1} a_{22}-a_{12} b_{2}\right)}{a_{11}\left(a_{11} a_{22}-a_{21} a_{n 2}\right.} \\
& x_{1}=\frac{b_{1} a_{22}-a_{12} b_{2}}{a_{11} a_{22}-a_{21} a_{12}} \\
& x_{2}=\frac{a_{n} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{21} a_{12}} \\
& x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)} \\
& x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)} \\
& A_{1}=\left[\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right] \\
& A_{2}=\left[\begin{array}{ll}
a_{11} & b_{1} \\
a_{4} & b_{2}
\end{array}\right]
\end{aligned}
$$

If a system of n linear equations in n variables has a coefficient matrix A with a nonzero determinant $|A|$, then the solution of the system is

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{dat}(A)}, \ldots, x_{n}=\frac{\operatorname{dat}\left(A_{n}\right)}{\operatorname{det}(A)}
\end{aligned}
$$

Where the j th column of A_{j} is the column of constants in the system of equations.
Example 8: If possible, use Cramer's Rule to solve the system.
a.
$-x_{1}-2 x_{2}=7$
$2 x_{1}+4 x_{2}=11$
crow

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-1 & -2 \\
2 & 4
\end{array}\right] \\
& \operatorname{det}(A)=-4+4=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } \\
& -8 x_{1}+7 x_{2}-10 x_{3}=-151 \\
& 12 x_{1}+3 x_{2}-5 x_{3}=86 \\
& 15 x_{1}-9 x_{2}+2 x_{3}=187 \\
& \vec{b}=\left[\begin{array}{c}
-151 \\
86 \\
187
\end{array}\right] \\
& x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{11490}{11+9}=10 \\
& x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A))}=\frac{-3447}{1149}=-3 \\
& A=\left[\begin{array}{ccc}
-8 & 7 & -10 \\
12 & 3 & -5 \\
15 & -9 & 2
\end{array}\right] \\
& \operatorname{det}(A)=1149 \\
& A_{1}=\left[\begin{array}{ccc}
-151 & 7 & -10 \\
86 & 3 & -5 \\
187 & -9 & 2
\end{array}\right] \\
& A_{2}=\left[\begin{array}{ccc}
-8 & -151 & -10 \\
12 & 86 & -5 \\
15 & 187 & 2
\end{array}\right] \\
& x_{3}=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=\frac{5745}{1149}=5 \\
& \left\{(10,-3,5)^{\text {cent }}\right. \text { consistent } \\
& A_{3}=\left[\begin{array}{ccc}
-8 & 7 & -151 \\
12 & 3 & 86 \\
15 & -9 & 187
\end{array}\right]_{92}
\end{aligned}
$$

$$
\text { Area }= \pm \frac{1}{2} \operatorname{det}\left[\begin{array}{lll}
x_{1} & y_{3} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]
$$

$$
\begin{array}{r}
1\left(x_{2} y_{3}-y_{2} x_{3}\right)-1\left(x_{1} y_{3}-\right. \\
\left.y_{1} x_{3}\right) \\
+1\left(x_{1 y_{2}}-\right.
\end{array}
$$ $\left.y_{1}, x_{2}\right)$

where the sign (\pm) is chosen to give positive area.

Proof:

$$
\begin{aligned}
\text { Areatrap }=\frac{b_{1}+b_{2}}{2} h \\
\text { Area }_{\text {Trap }}=\frac{y_{1}+y_{2}}{2}\left(x_{2}-x_{1}\right) \\
\text { Area }_{\text {Trap } 2}=\frac{y_{2}+y_{3}}{2}\left(x_{3}-x_{2}\right) \\
\text { Area Trap } 3=\frac{y_{1}+y_{3}}{2}\left(x_{3}-x_{1}\right)
\end{aligned}
$$

$$
A_{\Delta}=\frac{1}{2}\left[\left(x_{2}-x_{1}\right)\left(y_{1}+y_{2}\right)+\left(x_{3}-x_{2}\right)\left(y_{2}+y_{3}\right)-\left(x_{3}-x_{1}\right)\left(y_{1}+y_{3}\right)\right]
$$

Example 9: Find the area of the triangle whose vertices are $(1,-1),(3,-5)$, and $(0,-2)$.

TEST FOR COLLINEAR POINTS IN THE $x y$-PLANE
Three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are collinear if and only if

$$
\operatorname{det}\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
y_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]=0
$$

TWO-POINT FORM OF THE EQUATION OF A LINE
An equation of the line passing through the distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\operatorname{det}\left[\begin{array}{ll}
x & y \\
y_{1} & 1 \\
x_{2} & 1 \\
2 & 1
\end{array}\right]=0
$$

VOLUME OF A TETRAHEDRON
The volume of a tetrahedron with vertices $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$, and $\left(x_{4}, y_{4}, z_{4}\right)$ is

$$
V= \pm \frac{1}{6} d \underline{d t}\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array} 1\right.
$$

where the sign (\pm) is chosen to give positive volume.

Example 11: Find the volume of the tetrahedron with vertices $(1,1,1),(0,0,0),(2,1,-1)$, and $(-1,1,2)$.

TEST FOR COPLANAR POINTS IN SPACE
Four points, $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$, and $\left(x_{4}, y_{4}, z_{4}\right)$ are coplanar if and only if

$$
\operatorname{det}\left[\begin{array}{llll}
x_{1} & y_{1} z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}\right]=0
$$

THREE-POINT FORM OF THE EQUATION OF A LINE
An equation of the plane passing through the distinct points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, and $\left(x_{3}, y_{3}, z_{3}\right)$ is given by

$$
\operatorname{det}\left[\begin{array}{llll}
x & y & z & 1 \\
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1
\end{array}\right]=0
$$

3.3: GENERAL VECTOR SPACES

Learning Objectives:

1. Determine whether a set of vectors is a vector space
2. Determine if a subset of a known vector space V is a subspace of V
3. Write a vector as a linear combination of other vectors
4. Recognize bases in the vector spaces R^{n}, P_{n}, and $M_{m, n}$
5. Determine whether a set S of vectors in a vector space V is a basis for V
6. Find the dimension of a vector space

DEFINITION OF A VECTOR SPACE

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and every scalar (real number) c and d, then V is called a vector space.

Addition

1. $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\vec{u}+\vec{v})+\vec{w}$
4. V has a zero vector $\xrightarrow[O]{\vec{O}}$ such that
5. For every $\stackrel{\rightharpoonup}{\vee}$ in V, there is a vector in V denoted by $-\vec{V}$ such that $\vec{V}+(-\vec{v})=\overrightarrow{0}$

Scalar Multiplication

6. $c \mathbf{u}$ is in $\mathbf{\square}$.
7. $c(\mathbf{u}+\mathbf{v})=c \stackrel{\rightharpoonup}{u}+c \stackrel{\rightharpoonup}{v}$
8. $(c+d) \mathbf{u}=c \vec{u}+d \vec{u}$
9. $c(d \mathbf{u})=((d) \vec{u}$
10. $1(\mathbf{u})=\underline{u}$
colure under scalar milt. distributivopropentry
distributive property associative property sal. multiplicativoentity

Let \mathbf{V} be any element of a vector space V, and let c be any scalar. Then the following properties are true.

1. $0 \mathbf{v}=\overrightarrow{\mathbf{0}}$
2. If $\vec{C}=\overrightarrow{0}$, then \qquad $c=0$ or $\vec{y}=\overrightarrow{0}$.
3. $c \mathbf{0}=$ \qquad $\stackrel{\rightharpoonup}{0}$
4. $(-1) \mathbf{v}=-\stackrel{\rightharpoonup}{V}$

Example 1: Determine whether the set, together with the indicated operations, is a vector space. If it is not, then identify at least one of the ten vector space axioms that fails.
a. The set of all 2×2 matrices of the form $S=\left\{\left[\begin{array}{ll}a & b \\ c & 1\end{array}\right]: a, b, c, d \in R\right\}$.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right], B=\left[\begin{array}{ll}
4 & 5 \\
6 & 1
\end{array}\right] \in S \text { and } A+B=\left[\begin{array}{ll}
5 & 7 \\
9 & 2
\end{array}\right] \& S \text {. }
$$

S is not closed under addition.
b. The set of all 2×2 nonsingular matrices with the standard operations.
$A=0 \sim$
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],-A=\left[\begin{array}{cc}-1 & -2 \\ -3 & -4\end{array}\right]$ are nonsingular [ron $A+(-A)=[0, \delta]$ which is singular so set is nt closed uderminertis +

$C[a, b]=$ =hesestoral cantinuwae functionsatined on a closed interval $[a, b]$.
\qquad =the setofall polynomials.
$P_{n}=$ the set of al polynomial of degree $\leq n$.
$\frac{M_{m, n}}{}=$ the set of all $m \times R \quad$ matrices.
$M_{n, n}=$ the set of all $n \times n \quad$ square matrices.

Example 2: Describe the zero vector (the additive identity) of the vector space.
a. $C(-\infty, \infty)$
$\vec{O}: f(x)=0$ $[y=0]$

Example 3: Describe the additive inverse of a vector in the vector space.
a. $C(-\infty, \infty)$
b. $M_{1,4}$
$-f(x)$

$$
\stackrel{\rightharpoonup}{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left.\left.\begin{array}{l}
\text { If } A=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right] \\
-A=\left[-a_{11}-a_{12}-a_{13}\right.
\end{array}-a_{14}\right] .\right] .
$$

Example 4: Determine whether the set of continuous functions, $C(-\infty, \infty)$ is a vector space.
Let $f, g, h \in C(-\infty, \infty)$ and $c, d \in R$.

1. Closure under addition.

$$
f(x)+g(x)=(f+g)(x) \in(-\infty, \infty)
$$

2. Commutativity under addition.

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =g(x)+f(x) \\
& =(g+f)(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Associativity under addition. } \\
& \begin{aligned}
f(x)+(g+h)(x) & =f(x)+[g(x)+h(x)] \\
& =[f(x)+g(x)]+h(x) \\
& =(f+g)(x)+h(x)
\end{aligned}
\end{aligned}
$$

4. Additive identity.

$$
\begin{aligned}
f(x)+\dot{0} \text { additive identity } & =f(x)+0 \\
& =f(x) J
\end{aligned}
$$

$$
\begin{aligned}
c \vec{u} & =c\left(u_{1}, u_{2}\right) \\
& =\left(c u_{1}, c u_{2}\right)
\end{aligned}
$$

$$
\text { 5. Additive inverse. } \begin{aligned}
{[f+(-f)](x) } & =f(x)+[-f(x)] \\
& =0 \\
& =\stackrel{0}{0}
\end{aligned}
$$

6. Closure under scalar multiplication.

$$
c f(x)=(c f)(x) \in c(-\infty, \infty) J
$$

7. Distributivity under scalar multiplication (2 vectors and 1 scalar).

$$
\begin{aligned}
& \text { 7. } \\
& \text {. Distributivity under scalar multipicication (2 vectors and 1 } \\
&=c[f(x)+g(x)] \\
&=c f(x)+c g(x)]
\end{aligned}
$$

8. Distributivity under scalar multiplication (2 scalars and 1 vector).

$$
\begin{aligned}
{[(c+d) f](x) } & =(c+d) f(x) \\
& =c f(x)+d f(x) J
\end{aligned}
$$

9. Associativity under scalar multiplication.

$$
\begin{aligned}
{[c(d f)](x) } & =c[d f](x) \\
& =c(d f(x)] \\
& =(c d) f(x)
\end{aligned}
$$

10. Scalar multiplicative identity.

$$
\begin{aligned}
(1 f)(x) & =1 f(x) \\
& =f(x) /
\end{aligned}
$$

conclusion? $\quad(-\infty, \infty)$ is a vector space.

Example 5: Determine whether the set W is a subspace of the vector space V with the standard operations of addition and scalar multiplication.
a. $V: C[-1,1]$
W : The set of all functions that are differentiable on $[-1,1]$
W is a nonempty subset of V [diff. \rightarrow continuity].
Let f and $g \in W$, and let $c \in R$.

$$
\begin{aligned}
& \frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]=\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[(f+g)(x)] J \\
& c \frac{d}{d x} f(x)=\frac{d}{d x}[c f(x)] /
\end{aligned}
$$

$\therefore W$ is a subspace of V.
b. $V: C(-\infty, \infty)$
W : The set of all negative functions: $f(x)<0$.

$$
\begin{aligned}
& f(x)=-x^{2}<0 \\
& c=-5
\end{aligned}
$$

$$
c f(x)=-5\left(-x^{2}\right)=5 x^{2}>0
$$

w is not closed under scalar mult.

$$
\begin{aligned}
& \text { c. } V: C(-\infty, \infty) \quad \text { cont } \\
& \quad W: \text { The set of all odd functions: } f(-x)=-f(x) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { g. } \begin{array}{l}
f(x)=x \\
g(x)=\sin x \\
(f+g)(-x) \stackrel{?}{=}-(f+g)(x) \\
-x+\sin (-x) \stackrel{?}{=}-(x+\sin x) \\
-(x+\sin x)=-(x+\sin x) J
\end{array} .
\end{aligned}
$$

W is a nonempty subset of V.
Let f, g be odd functions, and let $c \in R$

$$
\begin{aligned}
& \text { Let } f, g \text { be odd functions, and let cen }=c f(-x) \\
& \begin{aligned}
(f+g)(-x) & =f(-x)+g(-x) \quad(c f)(-x) \\
& =c[-f(x)] \\
& =-f(x)+(-g(x)) \\
& =-c f(x)] \\
& =-(f+g)(x) J \quad \therefore \text { Wis subspace of } V .
\end{aligned}
\end{aligned}
$$

d. $V:\left\{M_{n, n}: n \in Z^{+}\right\}$

$$
\begin{aligned}
& B=\left[\begin{array}{cccc}
b_{11} & \Delta & \cdots & 0 \\
0 & b_{22} & \cdots & 0 \\
\vdots & \ddots & 0 \\
0 & 0 & b_{n n}
\end{array}\right], c \in 0 \\
& A+B=\left[\begin{array}{ccc}
a_{11}+b_{11} & 0 & \cdots \\
0 & 0 & 0 \\
\vdots & a_{22}+b_{22} & \cdots \\
0 & \cdots & 0 \\
0 & \cdots & 0 \\
a_{m+}+b_{n n}
\end{array}\right] \in W J
\end{aligned}
$$

e. W : The set of all $\mathrm{n} \times \mathrm{n}$ matrices whose trace is nonzero.

$$
O\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 3 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{ll}
0, n & \left.: n \in Z^{+}\right\} \\
0 & 0
\end{array} 0\right.
$$

$$
\left.\begin{array}{rl}
c A & =c\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & \cdots \\
\vdots & \ddots & 0 \\
0 & \cdots & 0 \\
0 & \cdots & 0 & a_{n n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c a_{11} & 0 & 0 & \cdots
\end{array}\right) \\
0 & c a_{22} \\
\vdots & \cdots
\end{array}\right)
$$

$$
\uparrow
$$

rot closed under scal. mull.
trace $=1+5+9=15 \neq 0$
f. $V: C(-\infty, \infty)$
$w:\{a x+b: a, b \in R, a \neq 0\}$

$$
f(x)=2 x+5
$$

$$
g(x)=-2 x-1
$$

$$
\begin{aligned}
(f+g)(x) & =(2 x+5)+(-2 x-1) \\
& =0 x+4 \& \omega .
\end{aligned}
$$

not closed under addition

$$
\text { g. } \begin{aligned}
& V:\left\{M_{m, n}: m, n \in Z^{+}\right\} \\
& W:\left\{\left[\begin{array}{lll}
a & 0 & \sqrt{a}
\end{array}\right]^{T}: a \in R, a \geq 0\right\} \\
& A=\left[\begin{array}{lll}
2 & 0 & \sqrt{2}
\end{array}\right]^{\top} \quad \in W \\
& B= {\left[\begin{array}{lll}
3 & 0 & \sqrt{3}
\end{array}\right]^{\top} } \\
& A+B=\left[\begin{array}{lll}
5 & 0 & \sqrt{2}+\sqrt{3}
\end{array}\right] \\
& \sqrt{2}+\sqrt{3} \pm \sqrt{5}!
\end{aligned}
$$

not closed under addition.

Example 6: For the matrices

$$
A=\left[\begin{array}{rr}
2 & -3 \\
4 & 1 \\
\boldsymbol{v}_{\mathbf{1}}
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
0 & 5 \\
1 & -2
\end{array}\right]
$$

in $M_{2,2}$, determine whether the given matrix is a linear combination of A and B.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
6 & -19 \\
10 & 7
\end{array}\right]} \\
& \frac{2}{2} \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{z} \\
& c_{1} A+c_{2} B=\left[\begin{array}{cc}
6 & -19 \\
10 & 7
\end{array}\right] \\
& {\left[\begin{array}{ll}
u_{1} & -3 c_{1} \\
4 c_{1} & 1 c_{1}
\end{array}\right]+\left[\begin{array}{cc}
0 c_{n} & 5 c_{n} \\
1 c_{2} & -2 c_{2}
\end{array}\right]=\left[\begin{array}{cc}
6 & -19 \\
10 & 7
\end{array}\right]} \\
& \left.\begin{array}{l}
2 c_{1}=6 \\
3 c_{1}+5 c_{2}=-19
\end{array}\right\} c_{1}=3 \\
& \left.\begin{array}{rl}
-3 c_{1}+5 c_{2} & =-19 \\
4 c_{1}+c_{2} & =10
\end{array}\right\}-3(3)+5 c_{2}=-19 \\
& 4 c_{1}+c_{2}=10 \\
& c_{2}=-2 \\
& 3\left[\begin{array}{cc}
2 & -3 \\
4 & 1
\end{array}\right]+(-2)\left[\begin{array}{cc}
0 & 5 \\
1 & -2
\end{array}\right]=\left[\begin{array}{cc}
6 & -19 \\
10 & 7
\end{array}\right] \text { es }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Consider } P_{n}(x)=\frac{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}}{P_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}}
\end{aligned}
$$

Example 7: Determine whether the set of vectors in P_{2} is linearly independent or linearly dependent.

$$
\begin{aligned}
& S=\left\{x^{2}, x^{2}+1\right\} \\
& \vec{v}_{1}, \vec{v}_{2} \vec{V}_{3} \\
& C_{1} \vec{V}_{1}+C_{2} \vec{v}_{2}=\vec{O} \\
& C_{1} x^{2}+C_{2}\left(x_{2}+1\right)=0+O x+O x^{2} \\
& C_{2}+\left(C_{1}+C_{2}\right) x^{2}=0+O x^{2}
\end{aligned}
$$

$$
c_{2}=0
$$

S is linearly independent

$$
c_{1}+c_{2}=0 \rightarrow c_{1}=0
$$

Example 8: Determine whether the set of vectors in $M_{2,2}$ is linearly independent or linearly dependent.

$$
\begin{aligned}
& S=\left\{\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right],\left[\begin{array}{cc}
-4 & -1 \\
0 & 5
\end{array}\right],\left[\begin{array}{cc}
-8 & -3 \\
-6 & 17
\end{array}\right]\right\} \\
& \vec{v}_{1} \vec{v}_{2} \vec{v}_{3} \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0} \\
& c_{1}\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]+c_{2}\left[\begin{array}{cc}
-4 & -1 \\
0 & 5
\end{array}\right]+c_{3}\left[\begin{array}{cc}
-8 & -3 \\
-6+17
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& 2 c_{1}-4 c_{2}-8 c_{3}=0 \rightarrow 2\left(-2 c_{3}\right)-4\left(-3 c_{3}\right)-8 c_{3}=0 \rightarrow c_{3}=1 \\
& -c_{2}-3 c_{3}=0 \rightarrow c_{2}=-3 c_{3}=-3 \\
& -3 c_{1}+6 c_{3}=0 \rightarrow c_{1}=-2 c_{3}=-2 \\
& c_{1}+5 c_{2}-17 c_{3}=0
\end{aligned}
$$

Since \exists a nontrivial solution to this equation, S is linearly dependent.

$$
\begin{aligned}
& \text { Example 9: Write the standard basis for the vector space. } \\
& \text { Standard basis }=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
& \quad \text { for } M_{3,2}
\end{aligned}
$$

a. M_{3},

$$
\text { b. } P_{3}=a_{0}+a_{1} x+a_{2} x^{2}+a_{2} x^{3}
$$

$$
\left\{\begin{array}{l}
a_{0}=1: 1+0 x+0 x^{2}+0 x^{3} \\
a_{1}=1: 0+1 x+0 x^{2}+0 x^{3} \\
a_{2}=1: 0+0 x+1 x^{2}+0 x^{3} \\
a_{3}=1: 0+0 x+0 x^{2}+1 x^{3}
\end{array}\right.
$$

Standard basis $=\left\{1, x, x^{2}, x^{3}\right\}$
Example 10: Determine whether S is a basis for the indicated vector space.
$\operatorname{Dim}\left(P_{3}\right)=4$
 and S has 4 vectors, S is a basisfor $P_{3} . P_{3}$.

$$
\begin{aligned}
& \text { check for lin.ind: } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+c_{4} \vec{v}_{4}=\overrightarrow{0} \\
& c_{1}\left(4 t-t^{2}\right)+c_{2}\left(5+t^{3}\right)+c_{3}(3 t+5)+c_{4}\left(2 t^{3}-3 t^{2}\right)=0 \\
& 4 c_{1} t-c_{1} t^{2}+5 c_{2}+c_{2} t^{3}+3 c_{3} t+5 c_{3}+2 c_{4} t^{3}-3 c_{4} t^{2}=0+0 t+0 t^{2} \\
& \left(5 c_{2}+5 c_{3}\right)+\left(4 c_{1}+3 c_{3}\right) t+\left(-c_{1}-3 c_{4}\right) t^{2}+\left(c_{2}+2 c_{4}\right)=0+0 t+0 t^{2}+c^{3} \\
& \left.\begin{array}{rlr}
5 c_{2}+5 c_{3} & =0 \\
4 c_{1} & +3 c_{3} & =0 \\
-c_{1} & -3 c_{4} & =0 \\
c_{2} & +2 c_{4} & =0
\end{array}\right\} A=\left[\begin{array}{cccc}
0 & 5 & 5 & 0 \\
4 & 0 & 3 & 0 \\
-1 & 0 & 0 & -3 \\
0 & 1 & 0 & 2
\end{array}\right] \\
& \operatorname{det}(A)=30 \neq 0 \\
& \text { so } \exists \text { a unique } \\
& \text { solution to the }
\end{aligned}
$$

Example 11: Find a basis for the vector space of all 3×3 symmetric matrices. What is the dimension of this vector space?

1) Him... the easiest basis to find is the standard basis.
2) What does a 3×3 symmetric matrix look like in general?

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

$\begin{aligned} & \text { Standard basis for } \\ & 3 \times 3 \text { symmetric } \\ & \text { matrices }\end{aligned}$$\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\right.$,
dimension for this

$$
\text { space }=6
$$

Example 11: Let T be the linear transformation from P_{2} into R given by the integral $T(p)=\int_{0}^{1} p(x) d x$.
Find the preimage of 1 . That is, find the polynomial function (s) of degree 2 or less such that $T(p)=1$.
1)

$$
\begin{array}{rlrl}
T: P_{2} \rightarrow R & & \text { 2) } \begin{array}{ll}
P_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2} \\
T\left(P_{2}\right)=R & P(x)=\left\{(1-a-b)+2 a x+3 b x^{2}:\right. \\
\left.a_{0} b \in R\right\}
\end{array} \\
\int_{0}^{1} p(x) d x=1 & \\
\int_{0}^{1}\left[a_{0}+a_{1} x+a_{2} x^{2}\right] d x=1 \\
\left(a_{0} x+\frac{1}{2} a_{1} x^{2}+\left.\frac{1}{3} a_{2} x^{3}\right|_{x=1} ^{x}=1\right. & =1 \\
\left(a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}\right)-(0) & =1 \\
a_{0} & =1-\frac{1}{2} a_{1}-\frac{1}{3} a_{2}, \text { Let } a_{1}=2 a \text { and } a_{2}=3 b \\
a_{0} & =1-a-b
\end{array}
$$

3.4: RANK/NULLITY OF A MATRIX, SYSTEMS OF LINEAR EQUATIONS. AND COORDINATE VECTORS
Learning Objectives:

1. Find a basis for the row space, a basis for the column space, and the rank of a matrix
2. Find the nullspace of a matrix
3. Find a coordinate matrix relative to a basis in R^{n}
4. Find the transition matrix from the basis B to the basis B^{\prime} in R^{n}
5. Represent coordinates in general n-dimensional spaces

Let's do our math stretches!
Consider the following matrix.

$$
A=\left[\begin{array}{cccc}
\vec{c}_{1} & \vec{c}_{2} & \vec{c}_{3} & \vec{c}_{4} \\
1 & 3 & -1 & 5 \\
7 & 1 & 13 & 6
\end{array}\right] \vec{r}_{1}
$$

The row vectors of A are:

$$
(1,3,-1,5),(7,1,13,6)
$$

$0^{2}\left[\begin{array}{ccc}1 & -1 & 5\end{array}\right],\left[\begin{array}{llll}7 & 1 & 13 & 6\end{array}\right]$

The column vectors of A are:

$$
\begin{aligned}
& (1,7)^{\top},(3,1)^{\top},(-1,13)^{\top}(5,6)^{\top} \\
& {\left[\begin{array}{l}
1 \\
7
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
13
\end{array}\right],\left[\begin{array}{c}
5 \\
6
\end{array}\right]}
\end{aligned}
$$

DEFINITION OF ROW SPACE AND COLUMN SPACE OF A MATRIX
Let A be an $m \times n$ matrix.
The row space of A is the Subspace of R^{n} Spanned by the \qquad sow vectors of A.

The \qquad column space of A is the subspace of R^{m} \qquad by the \qquad column vectors of A.

Recall that two matrices are row-equivalent when one can be obtained from the other by elementary row operations.

THEOREM 3.12: ROW-EQUIVALENT MATRICES HAVE THE SAME ROW SPACE
If an $m \times n$ matrix A is row-equivalent to an $m \times n$ matrix B, then the row space of A is equal to the row space of B.
Proof:
Since A is sow-equisaleat to B, Fa finite number of elementary matrices $E_{1}, E_{2}, \ldots, E_{L} \rightarrow B=E_{k} E_{K-\cdots} \cdots E_{2} E_{1} A$, it follows that the row vectors of B can be writtenas linear combinations of the row vectors of A. The row vectors of B, lie in the row space of A, and the subspace spanned by the row vectors of B is contained in the rows pace of A. similarly, the row vectors of A lie in the row space of B, and the subspace spanned by the row vectors of A is contained in the row space of 8 . \therefore The 2 rowspaces are subspaces of each other, hence they are equal,
THEOREM 3.12: BASIS FOR THE ROW SPACE OF A MATRIX
If a matrix A is row-equivalent to a matrix B in row-echelon form, then the nonzero row vectors of B form a basis for the row space of A.

To find a basis for the row space of a matrix: \qquad row reduce the matrix. The \qquad non 2240 rows in the reduced \qquad matrix are a \qquad bapip for the row space of the matrix. Your answer should be in the form of a \qquad set of \qquad row vectors.

To find a basis for the column space of a matrix:
Method 1: Use the steps above on the transpose of the matrix. Your answer should be in the form of a set of Column \qquad vectors.

Method 2: Use reduced form of the original matrix to find the columns which contain the \qquad pivots (leading ones

\qquad matrix for a basis. Your answer should be in the form of a \qquad Set of \qquad Column vectors.
$\vec{c}_{1} \vec{c}_{2}$

$$
\vec{c}_{1} \vec{c}_{2} \vec{c}_{3}
$$

Example 1: Find a basis for the row space and column space of the following matrix:

A Basis for the row space: $\{(1,0,4 / 5),(0,1,1 / 5)\}$
Method 2:
A Babi for the clem space:
Method 1:

Example 2: Find a basis for the space and column space of the following matrix:

$$
A=\left[\begin{array}{l}
4 \\
6 \\
2
\end{array}\right]\left[\begin{array}{cc}
20 & 31 \\
-5 & -6 \\
-11 & -16
\end{array}\right] \quad \operatorname{rref}(A)=\left[\begin{array}{cc}
1 & 1 / 4 \\
0 & 3 / 2 \\
0 & \vec{r}_{1} \\
\vec{c}_{1} & \vec{c}_{2} \\
\vec{c}_{2} & \vec{c}_{3}
\end{array} \vec{r}_{3}\right.
$$

A basis for $:\{(1,0,1 / 4),(0,1,3 / 2)\}$
the rowspace

$$
\begin{aligned}
& \text { A basis for } \\
& \text { the column : }\left\{\left[\begin{array}{l}
4 \\
\text { space } \\
2
\end{array}\right],\left[\begin{array}{c}
20 \\
-5 \\
-11
\end{array}\right]\right\}
\end{aligned}
$$

If A is an $m \times n$ matrix, then the row space and the column space of A have the same dimension

DEFINITION OF THE RANK OF A MATRIX
The dimension of the row (or column) space of a matrix A is called the rank of A and is denoted by $\operatorname{rank}(A)$.

Example 3: Find the rank of the matrix from
a. Example 1
b. Example 2

$$
\operatorname{rank}(A)=2
$$

$$
\operatorname{rank}(A)=2
$$

THEOREM 3.14: SOLUTIONS OF A HOMOGENEOUS SYSTEM
If A is an $m \times n$ matrix, then the set of all solutions of the homogeneous system of linear equations $A \vec{x}=\overrightarrow{0}$ is a Subspace of R^{n} called the null space of \qquad and is denoted $N(A)$. so, $\quad N(A)=\left\{\vec{x} \in R^{n}: A \vec{x}=\overrightarrow{0}\right\}$

The dimension of the nulspace of A is called the nullity of A.
roof
Since A is $m \times n, \vec{x}$ has $n \times 1$. So the set of all solutions has to be a subset of R^{n}. This set has to be nonempty since $A \vec{O}=\overrightarrow{0}$.
$A\left(\vec{x}_{1}+\dot{x}_{2}\right)=A \vec{x}_{1}+A \vec{x}_{2}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$, so A is closed under + .
$A\left(c \vec{x}_{1}\right)=c\left(A \vec{x}_{1}\right)=c \overrightarrow{0}=\overrightarrow{0}$, so A is closed under scale, mult.
$\therefore \overrightarrow{A x}=\vec{O}$ is a subspace of R^{n}.

Example 4: Find the nullspace of the following matrix A, and determine the nullity of A.

$$
\begin{aligned}
& \begin{array}{r}
\times 4
\end{array}=\left[\begin{array}{rrrr}
1 & 4 & 2 & 1 \\
0 & 1 & 1 & -1 \\
-2 & -8 & -4 & -2
\end{array}\right] \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \\
& A \vec{x}=\overrightarrow{0} \\
& \operatorname{rref}(A)=\left[\begin{array}{cccc}
1 & 0 & -2 & 5 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow \begin{array}{l}
x_{1} \\
x_{2}+2 x_{3}+5 x_{4}=0 \\
x_{3}-x_{4}=0
\end{array} \\
& x_{1}=2 s-5 t \quad x_{3}=5 \\
& \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 s-5 t \\
-s+t \\
5 \\
t
\end{array}\right] \quad x_{2}=-s+t \quad x_{4}=t \\
& \begin{aligned}
& N(A)=\left\{\begin{array}{l}
\{(2 s-5 t,-s t, s, t): \\
s, t \in R
\end{array}\right. \\
&=\{s(2,-1,1,0)+t(-5,1,0,1) \\
&s, t \in R\}
\end{aligned}=s\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{c}
t \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
1 \\
0 \\
1
\end{array}\right] \\
& \text { nullity }(A)=2 \\
& \text { A basis for the } \\
& N(A): \\
& \left\{\left[\begin{array}{l}
{[10}
\end{array}\right\}\right.
\end{aligned}
$$

If A is an $m \times n$ matrix of rank \qquad , then the \qquad dimension of the solution space of $A^{\vec{x}}=\overrightarrow{0}$ is $n-r$. That is,

$$
n=\operatorname{rank}(A)+\text { nullity }(A)
$$

Example 5: consider the following homogeneous system of linear equations:

$$
x-y=0
$$

$-x+y=0$
\rightarrow homogeneous
a. Find a basis for the solution space.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right], \vec{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \operatorname{ref}(A)=\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \rightarrow x-y=0 \rightarrow x=y \rightarrow \begin{array}{c}
x \\
=t \\
y
\end{array}=t \\
& \vec{x}=\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

A basis for the solution space is: $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
b. Find the dimension of the solution space. (nullity (A))

$$
1
$$

c. Find the solution of a consistent system $A \mathbf{x}=\mathbf{b}$ in the form $\mathbf{x}_{p}+\mathbf{x}_{h}$

$$
\begin{aligned}
& \vec{x}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

\qquad system $A \vec{x}=\overrightarrow{0}$.
Proof: Let \vec{x} be any solution of $A \vec{x}=\vec{b}$. Then $\vec{x}-\vec{x}_{p}$ is a Solution to $A \vec{x}=\overrightarrow{0} . A\left(\vec{x}-\vec{x}_{\rho}\right)=\overrightarrow{0} \rightarrow A \vec{x}-A \vec{x}_{p}=\overrightarrow{0}$, which gives us $\vec{b}-\vec{b}=\overrightarrow{0}$. Let $\vec{x}_{h}=\vec{x}-\vec{x}_{p}$, thus $\vec{x}=\vec{x}_{p}+\vec{x}_{h} \cdot \|$

THEOREM 3.17: SOLUTIONS OF A SYSTEM OF LINEAR EQUATIONS
The system $A \vec{x}=\vec{b}$ is consistent if and only if \vec{b} is in the column space of A.

$$
A \vec{x}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
a_{31} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
a_{32} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
a_{3 n} \\
\vdots \\
a_{m n}
\end{array}\right] \text {, }
$$

So $A \vec{x}=\vec{b}$ iff $\vec{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots\end{array}\right]$ is a linear combo of the columns
of A. That is, the system is consistent ib b $\vec{b} \in$ subspace R^{m} spanned by the columns of A. /l

Example 7: consider the following nonhomogeneous system of linear equations:

$$
\left.\begin{array}{rl}
2 x-4 y+5 z & =8 \\
-7 x+14 y+4 z & =-28 \\
3 x-6 y+z & =12
\end{array} \quad\right\rangle=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Determine whether $A \mathbf{x}=\mathbf{b}$ is consistent.
so $A \vec{x}=\vec{b}$ is consistent.

If the system is consistent, write the solution in the form $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{h}$, where \mathbf{x}_{p} is a particular solution of $A \mathbf{x}=\mathbf{b}$ and \mathbf{x}_{h} is a solution of $A \mathbf{x}=\mathbf{0}$.

$$
\vec{x}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \text { is a solution. }
$$

COORDINATE REPRESENTATION RELATIVE TO A BASIS
Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be an ordered basis for a vector space V, and let \mathbf{x} be a vector in V such that

$$
\vec{x}=C_{1} \vec{v}_{1}+C_{2} \vec{v}_{2}+\cdots+C_{n} \vec{v}_{n}
$$

The scalars $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates \qquad relative to the \qquad basis . The column matrix (or coordinate matrix) of \qquad $\stackrel{\rightharpoonup}{x}$ relative to \qquad is the (column matrix in h^{n} whose \qquad

Note: In R^{n}, column notation is used for the coordinate matrix. For the vector \vec{X} \qquad $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ the \qquad $\overrightarrow{\text { x }}$ relative to the \qquad standard basis for \qquad . So you have

$$
[\vec{x}]_{S}=\left[\begin{array}{c}
x_{1} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Example 8: Find the coordinate matrix of \mathbf{x} in R^{n} relative to the standard basis.

$$
\mathbf{x}=(1,-3,0)
$$

$S=\{(1,0,0),(0,1,0),(0,0,1)\}$

Example 9: Given the coordinate matrix of \mathbf{x} relative to a (nonstandard) basis B for R^{n}, find the coordinate matrix of \mathbf{x} relative to the standard basis.

$$
\begin{aligned}
& {[\mathbf{x}]_{B}=\left[\begin{array}{c}
-2 \\
3 \\
4 \\
1
\end{array}\right]} \\
& \vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+c_{4} \vec{v}_{4} \\
& \begin{aligned}
\vec{x} & =-2(4,0,1,3)+3(0,5,-1,-1)+4(-3,4,2,1)+1(0,1,5,0) \\
\vec{x} & =(-20,32,-4,-5)
\end{aligned}
\end{aligned}
$$

Example 10: Find coordinate matrix of \mathbf{x} in R^{n} relative to the basis B^{\prime}.

$$
\begin{aligned}
& B^{\prime}=\left\{\underset{V_{1}}{(-6,7)}, \underset{V_{2}}{(4,-3)}\right\}, \mathbf{x}=(-26,32) \\
& {[\vec{x}]_{B^{\prime}}=\left[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
\hline
\end{array}\right.} \\
& \vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \\
& (-26,32)=c_{1}(-6,7)+c_{2}(4,-3) \\
& -6 c_{1}+4 c_{2}=-26 \\
& 7 c_{1}-3 c_{2}=32 \\
& c_{1}=5, c_{2}=1
\end{aligned}
$$

The matrix P is called the transition matrix from B^{\prime} to B, where $[\vec{x}]_{B^{\prime}}$ is the coordinate matrix of \vec{x} relative to \mathcal{B}^{\prime}, and $[\vec{x}]_{\beta}$ is the coordinate matrix of \vec{x} relative to \underline{B}. Multiplication by the transition matrix P changes a coordinate matrix relative to β^{\prime} into a coordinate matrix relative to B.
change of basis from B^{\prime} to B :

$$
P\left[\frac{1}{x}\right]_{B^{\prime}}=[\stackrel{\rightharpoonup}{x}]_{B}
$$

change of basis from B to B^{\prime} :

$$
P^{-1}[\underline{x}]_{B}=[\vec{x}]_{B^{\prime}}
$$

The change of basis problem in example 10 can be represented by the matrix equation:

$$
\begin{aligned}
& \begin{array}{l}
-60_{1}+4 c_{2}=-26 \\
1 c_{1}-3 e_{2}=32
\end{array} \\
& P=\left[\begin{array}{c}
-6 \\
7-3
\end{array}\right],\left[\begin{array}{l}
4
\end{array}\right]_{S}=\left[\begin{array}{c}
-26 \\
32
\end{array}\right] \\
& P[\vec{x}]_{B^{\prime}}=[x]_{S} \\
& {[\dot{x}]_{B^{\prime}}=P^{-1}\left[\begin{array}{l}
-26 \\
32
\end{array}\right]=-\frac{1}{10}\left[\begin{array}{c}
-3-4 \\
7-6
\end{array}\right]\left[\begin{array}{c}
-26 \\
32
\end{array}\right]=-\frac{1}{10}\left[\begin{array}{c}
-55 \\
-50
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right] /}
\end{aligned}
$$

THEOREM 3.18: THE INVERSE OF A TRANSITION MATRIX
If P is the transition matrix from a basis B^{\prime} to a basis B in R^{n}, then P is invertible and the transition matrix from B to B^{\prime} is given by P^{-1}. FYI: The transition matrix from B f B
LEMMA
Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $B^{\prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be two bases for a vector space V. If

$$
\begin{aligned}
\mathbf{v}_{1} & =c_{11} \mathbf{u}_{1}+c_{21} \mathbf{u}_{2}+\cdots c_{n 1} \mathbf{u}_{n} \\
\mathbf{v}_{2} & =c_{12} \mathbf{u}_{1}+c_{22} \mathbf{u}_{2}+\cdots c_{n 2} \mathbf{u}_{n} \\
& \vdots \\
\mathbf{v}_{n} & =c_{1 n} \mathbf{u}_{1}+c_{2 n} \mathbf{u}_{2}+\cdots c_{n n} \mathbf{u}_{n}
\end{aligned}
$$

then the transition matrix from B to B^{\prime} is

$$
Q=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 n} \\
\vdots & \ddots & \vdots \\
c_{n 1} & \cdots & c_{n n}
\end{array}\right]
$$

THEOREM 3.19: TRANSITION MATRIX FROM B TO B^{\prime}
Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $B^{\prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be two bases for R^{n}. Then the transition matrix \boldsymbol{P}^{-1} from B to $B^{C^{2}}$ can be found using Gauss-Jordan elimination on the $n \times 2 n$ matrix $\left[\begin{array}{ll}B^{\prime} & B\end{array}\right]$ as follows.

$$
\text { row reduce }\left[\begin{array}{ll}
B^{\prime} & B
\end{array}\right] \text { to }\left[I_{n} P^{-1}\right]
$$

Note: The transition matrix from B^{\prime} to \underline{B}
$n \times 2 n$ matrix $\left[\begin{array}{ll}B & B^{\prime}\end{array}\right]$ as follows.

$$
\text { row reduce }\left[B B^{\prime}\right] \text { to }\left[I_{n} P\right]
$$

Example 11: Find the transition matrix from B to B^{\prime}.

$$
\begin{aligned}
& B=\{(1,1),(1,0)\}, B^{\prime}=\frac{\{(1,0),(0,1)\}}{\text { Standard bap is for }} \\
& {\left[\begin{array}{ll}
B^{\prime} & B
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]}_{I_{n}} \underset{P^{-1}}{ } \quad P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]}
\end{aligned}
$$

Example 12: Find the coordinate matrix of p relative to the standard basis for P_{3}.

$$
\begin{aligned}
& p=3 x^{2}+114 x+13 \\
& S=\left\{\begin{array}{l}
1, x, x^{2}, x_{3}^{3} \\
\vec{v}_{1} \vec{\nu}_{2} \vec{v}_{3} \vec{v}_{4}
\end{array}\right.
\end{aligned}
$$

3.5: THE KERNEL, RANGE, AND MATRIX REPRESENTATIONS OF LINEAR TRANSFORMATIONS, AND SIMILAR MATRICES

Learning Objectives:

1. Find the kernel of a linear transformation
2. Find a basis for the range, the rank, and the nullity of a linear transformation
3. Determine whether a linear transformation is one-to-one or onto
4. Determine whether vector spaces are isomorphic
5. Find the standard matrix for a linear transformation
6. Find the standard matrix for the composition of linear transformations and find the inverse of an invertible linear transformation
7. Find the matrix for a linear transformation relative to a nonstandard basis
8. Find and use a matrix for a linear transformation
9. Show that two matrices are similar and use the properties of similar matrices

THE KERNEL OF A LINEAR TRANSFORMATION

We know from an earlier theorem that for any linear transformation \qquad the zero vector in \qquad maps to the \qquad vector in \qquad . That is, \qquad . In this section, we will consider whether there are other vectors \qquad such that \qquad . The collection of all such \qquad is called the \qquad of \qquad . Note that the zero vector is denoted by the symbol \qquad in both \qquad and \qquad , even though these two zero vectors are often different.

DEFINITION OF KERNEL OF A LINEAR TRANSFORMATION

Let $T: V \rightarrow W$ be a linear transformation. Then the set of all vectors \mathbf{v} in V that satisfy \qquad is
called the \qquad of T and is denoted by \qquad .

Example 1: Find the kernel of the linear transformation.
a. $\quad T: R^{3} \rightarrow R^{3}, T(x, y, z)=(x, 0, z)$
b. $\quad T: P_{3} \rightarrow P_{2}, T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$
c.

$$
\begin{aligned}
& T: P_{2} \rightarrow R, \\
& T(p)=\int_{0}^{1} p(x) d x
\end{aligned}
$$

THEOREM 3.20: THE KERNEL IS A SUBSPACE OF V
The kernel of a linear transformation $T: V \rightarrow W$ is a subspace of the domain V.
Proof:

THEOREM 3.20: COROLLARY
Let $T: R^{n} \rightarrow R^{m}$ be the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$. Then the kernel of T is equal to the solution space of \qquad .

THEOREM 3.21: THE RANGE OF T IS A SUBSPACE OF W
The range of a linear transformation $T: V \rightarrow W$ is a subspace of W.

THEOREM 3.21: COROLLARY

Let $T: R^{n} \rightarrow R^{m}$ be the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$. Then the column space of \qquad is equal to the \qquad of \qquad .

Example 2: Let $T(\mathbf{v})=A \mathbf{v}$ represent the linear transformation T. Find a basis for the kernel of T and the range of T.
$A=\left[\begin{array}{rr}1 & 1 \\ -1 & 2 \\ 0 & 1\end{array}\right]$

DEFINITION OF RANK AND NULLITY OF A LINEAR TRANSFORMATION

Let $T: V \rightarrow W$ be a linear transformation. The dimension of the kernel of T is called the
is called the ___ of T and is denoted by T and is denoted by ___ The dimension of the range of T

THEOREM 3.22: SUM OF RANK AND NULLITY

Let $T: V \rightarrow W$ be a linear transformation from an n-dimensional vector space V into a vector space W. Then
the \qquad of the \qquad of the \qquad and \qquad is
equal to the dimension of the \qquad . That is,

Proof:

Example 3: Define the linear transformation T by $T(\mathbf{x})=A \mathbf{x}$. Find $\operatorname{ker}(T)$, null (T), $\operatorname{range}(T)$, and $\operatorname{rank}(T)$.
$A=\left[\begin{array}{rrrrr}3 & -2 & 6 & -1 & 15 \\ 4 & 3 & 8 & 10 & -14 \\ 2 & -3 & 4 & -4 & 20\end{array}\right]$

Example 4: Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation. Use the given information to find the nullity of T and give a geometric description of the kernel and range of T.
T is the reflection through the $y z$-coordinate plane:
$T(x, y, z)=(-x, y, z)$

If the \qquad vector is the only vector \qquad such that \qquad , then \qquad is
\qquad . A function \qquad is called one-to-one when the
\qquad of every \qquad in the range consists of a \qquad vector. This is equivalent
to saying that \qquad is one-to-one if and only if, for all \qquad and \qquad in \qquad
\qquad implies that \qquad .

THEOREM 3.23: ONE-TO-ONE LINEAR TRANSFORMATIONS

Let $T: V \rightarrow W$ be a linear transformation. Then T is one-to-one if and only if \qquad .

Proof:

THEOREM 3.24: ONTO LINEAR TRANSFORMATIONS

Let $T: V \rightarrow W$ be a linear transformation, where W is finite dimensional. Then T is onto if and only if the of T is equal to the of W.

Proof:

THEOREM 3.25: ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS

Let $T: V \rightarrow W$ be a linear transformation with vector spaces V and W, \qquad of dimension n. Then
T is one-to-one if and only if it is \qquad .

Example 5: Determine whether the linear transformation is one-to-one, onto, or neither.
$T: R^{2} \rightarrow R^{2}, T(x, y)=(x-y, y-x)$

DEFINITION: ISOMORPHISM

A linear transformation $T: V \rightarrow W$ that is \qquad and \qquad is called an . Moreover, if V and W are vector spaces such that there exists an isomorphism
from V to W, then V and W are said to be to each other.

Two finite dimensional vector spaces V and W are \qquad if and only if they are of the same \qquad .

Example 6: Determine a relationship among m, n, j, and k such that $M_{m, n}$ is isomorphic to $M_{j, k}$.

WHICH FORMAT IS BETTER? WHY?

Consider $T: R^{3} \rightarrow R^{3}, T\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}-x_{2}-5 x_{3},-2 x_{1}+x_{2}+6 x_{3}, x_{2}-3 x_{3}\right)$
and
$T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{rrr}4 & -1 & -5 \\ -2 & 1 & 6 \\ 0 & 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
What do you think?

The key to representing a linear transformation \qquad by a matrix is to determine how it acts on a
\qquad for \qquad . Once you know the \qquad of every vector in the \qquad
you can use the properties of linear transformations to determine \qquad for any \qquad in \qquad .

Do you remember the standard basis for R^{n} ? Write this standard basis for R^{n} in column vector notation.
$B=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}=$

THEOREM 3.26: STANDARD MATRIX FOR A LINEAR TRANSFORMATION

Let $T: R^{n} \rightarrow R^{m}$ be a linear transformation such that, for the standard basis vectors \mathbf{e}_{i} of R^{n},
$T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right], T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right], \ldots, T\left(\mathbf{e}_{n}\right)=\left[\begin{array}{c}a_{1 n} \\ a_{2 n} \\ \vdots \\ a_{m n}\end{array}\right]$,
then the $m \times n$ matrix whose n columns correspond to $T\left(\mathbf{e}_{i}\right)$
$A=\left[\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right]$
is such that $T(\mathbf{v})=A \mathbf{v}$ for every \mathbf{v} in $R^{n} . A$ is called the standard matrix for T.

Example 5: Find the standard matrix for the linear transformation T.
$T(x, y)=(4 x+y, 0,2 x-3 y)$

Example 2: Use the standard matrix for the linear transformation T to find the image of the vector \mathbf{v}.
$T(x, y)=(x+y, x-y, 2 x, 2 y), \mathbf{v}=(3,-3)$

Example 6: Consider the following linear transformation T :
T is the reflection through the $y z$-coordinate plane in $R^{3}: T(x, y, z)=(-x, y, z), \mathbf{v}=(2,3,4)$.
a. Find the standard matrix A for the following linear transformation T.
b. Use A to find the image of the vector \mathbf{v}.
c. Sketch the graph of \mathbf{V} and its image.

THEOREM 3.27: COMPOSITION OF LINEAR TRANSFORMATIONS

Let $T_{1}: R^{n} \rightarrow R^{m}$ and $T_{2}: R^{m} \rightarrow R^{p}$ be linear transformations with standard matrices A_{1} and A_{2}, respectively. The composition $T: R^{n} \rightarrow R^{p}$, defined by $T(\mathbf{v})=T_{2}\left(T_{1}(\mathbf{v})\right)$, is a linear transformation. Moreover, the standard matrix A for T is given by the matrix product $A=A_{2} A_{1}$.

Proof:

Example 7: Find the standard matrices A and A^{\prime} for $T=T_{2} \circ T_{1}$ and $T=T_{1} \circ T_{2}$.
$T_{1}: R^{2} \rightarrow R^{3}, T_{1}(x, y)=(x, y, y)$
$T_{2}: R^{3} \rightarrow R^{2}, T_{2}(x, y, z)=(y, z)$

DEFINITION OF INVERSE LINEAR TRANSFORMATION

If $T_{1}: R^{n} \rightarrow R^{n}$ and $T_{2}: R^{n} \rightarrow R^{n}$ are linear transformations such that for every \mathbf{v} in R^{n},
then T_{2} is called the \qquad of T_{1}, and T_{1} is said to be \qquad .
**Not every \qquad transformation has an \qquad . If \qquad is \qquad
however, the inverse is \qquad and is denoted by \qquad .

THEOREM 3.28

Let is $T: R^{n} \rightarrow R^{n}$ be a linear transformation with a standard matrix A. Then the following conditions are equivalent.

1. T is \qquad .
2. T is an \qquad .
3. A is \qquad .
4. If T is invertible with standard matrix A, then the standard matrix for \qquad is \qquad .

Example 8: Determine whether the linear transformation $T(x, y)=(x+y, x-y)$ is invertible. If it is, find its inverse.

Let V and W be finite-dimensional vector spaces with bases B and B^{\prime}, respectively, where $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$.
If $T: V \rightarrow W$ is a linear transformation such that

$$
\left[T\left(\mathbf{v}_{1}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right],\left[T\left(\mathbf{v}_{2}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \ldots,\left[T\left(\mathbf{v}_{n}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]
$$

then the $m \times n$ matrix whose n columns correspond to $\left[T\left(\mathbf{v}_{1}\right)\right]_{B^{\prime}}$

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

Example 9: Find $T(\mathbf{v})$ by using (a) the standard matrix, and (b) the matrix relative to B and B^{\prime}.
$T: R^{3} \rightarrow R^{2}, T(x, y, z)=(x-y, y-z), \mathbf{v}=(1,2,3)$,
$B=\{(1,1,1),(1,1,0),(0,1,1)\}, B^{\prime}=\{(1,2),(1,1)\}$

Example 10: Let $B=\left\{e^{2 x}, x e^{2 x}, x^{2} e^{2 x}\right\}$ be a basis for a subspace of W of the space of continuous functions, and let D_{x} be the differential operator on W. Find the matrix for D_{x} relative to the basis B.

A classical problem in linear algebra is determining whether it is possible to find a basis \qquad such that the matrix for \qquad relative to \qquad is \qquad .

1. Matrix for T relative to B :
2. Matrix for T relative to B^{\prime} :
3. Transition matrix from B^{\prime} to B :
4. Transition matrix from B to B^{\prime} :
\qquad

Example 11: Find the matrix A^{\prime} relative to the basis B^{\prime}.
$T: R^{2} \rightarrow R^{2}, T(x, y)=(x-2 y, 4 x), B^{\prime}=\{(-2,1),(-1,1)\}$

Example 12: Let $B=\{(1,-1),(-2,1)\}$ and $B^{\prime}=\{(-1,1),(1,2)\}$ be bases for $R^{2},[\mathbf{v}]_{B^{\prime}}=\left[\begin{array}{ll}1 & -4\end{array}\right]^{T}$, and let $A=\left[\begin{array}{rr}2 & 1 \\ 0 & -1\end{array}\right]$ be the matrix for $T: R^{2} \rightarrow R^{2}$ relative to B.
a. Find the transition matrix P from B^{\prime} to B.
b. Use the matrices P and A to find $[\mathbf{v}]_{B}$ and $\left[T(\mathbf{v})_{B^{\prime}}\right]$ where $[\mathbf{v}]_{B^{\prime}}=\left[\begin{array}{ll}1 & -4\end{array}\right]^{T}$.

For square matrices A and A^{\prime} of order n, A^{\prime} is said to be similar to A when there exists an invertible matrix P such that $A^{\prime}=P^{-1} A P$.

THEOREM 3.30

Let A, B, and C be square matrices of order n. Then the following properties are true.

1. A is \qquad to \qquad .
2. If A is similar to B, then \qquad is \qquad to \qquad .
3. If A is similar to B and B is similar to C, then \qquad is \qquad to \qquad .
Proof:

Example 13: Use the matrix P to show that A and A^{\prime} are similar.
$P=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right], A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right], A^{\prime}=\left[\begin{array}{rrr}2 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 2 & 3\end{array}\right]$

DIAGONAL MATRICES

Diagonal matrices have many \qquad advantages over nondiagonal matrices.
$D=\left(\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}\end{array}\right) \quad D^{k}=\left(\begin{array}{cccc}- & 0 & \cdots & 0 \\ 0 & & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \ldots\end{array}\right)$

Also, a diagonal matrix is its own \qquad . Additionally, if all the diagonal elements are nonzero, then the inverse of a diagonal matrix is the matrix whose main diagonal elements are the
\qquad of corresponding elements in the original matrix. Because of these advantages, it is important to find ways (if possible) to choose a basis for \qquad such that the \qquad matrix is \qquad .
Example 14: Suppose $A=\left[\begin{array}{rrr}\frac{3}{2} & -1 & -\frac{1}{2} \\ -\frac{1}{2} & 2 & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{5}{2}\end{array}\right]$ is the matrix for $T: R^{3} \rightarrow R^{3}$ relative to the standard basis.

Find the diagonal matrix A^{\prime} for T relative to the basis $B^{\prime}=\{(1,1,-1),(1,-1,1),(-1,1,1)\}$.

Example 15: Prove that if A is idempotent and B is similar to A, then B is idempotent. (An $n \times n$ matrix is idempotent when $A=A^{2}$).
Proof:

4.1: INNER PRODUCT SPACES

Learning Objectives:

1. Find the length of a vector and find a unit vector
2. Find the distance between two vectors
3. Find a dot product and the angle between two vectors, determine orthogonality, and verify the Cauchy-Schwartz Inequality, the triangle inequality, and the Pythagorean Theorem
4. Use a matrix product to represent a dot product
5. Determine whether a function defines an inner product, and find the inner product of two vectors in $R^{n}, M_{m, n}, P_{n}$, and $C[a, b]$
6. Find an orthogonal projection of a vector onto another vector in an inner product space

DEFINITION OF LENGTH OF A VECTOR IN R^{n}
The_____ or___ of a vector $\mathbf{v}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

When would the length of a vector equal to 0 ?

Example 1: Consider the following vectors:
$\mathbf{u}=\left(1, \frac{1}{2}\right) \quad \mathbf{v}=\left(2,-\frac{1}{2}\right)$
a. Find $\|\mathbf{u}\|$
b. Find $\|\mathbf{v}\|$
c. Find $\|\mathbf{u}\|+\|\mathbf{v}\|$
d. Find $\|\mathbf{u}+\mathbf{v}\|$
e. Find $\|3 \mathbf{u}\|$
f. Find $3\|\mathbf{u}\|$

Any observations?

THEOREM 4.1: LENGTH OF A SCALAR MULTIPLE

```
Let }\mathbf{v}\mathrm{ be a vector in }\mp@subsup{R}{}{n}\mathrm{ and let c}\mathrm{ be a scalar. Then
where
```

\qquad

``` is the
``` \(\qquad\)
``` of \(c\).
```

Proof:

THEOREM 4.2: UNIT VECTOR IN THE DIRECTION OF \mathbf{v}

If \mathbf{v} is a nonzero vector in R^{n}, then the vector
has length \qquad and has the same \qquad as \mathbf{v}.

Proof:

Example 2: Find the vector \mathbf{v} with $\|\mathbf{v}\|=3$ and the same direction as $\mathbf{u}=(0,2,1,-1)$.

DEFINITION OF DISTANCE BETWEEN TWO VECTORS
The distance between two vectors \mathbf{u} and \mathbf{v} in R^{n} is

Example 3: Find the distance between $\mathbf{u}=(1,1,2)$ and $\mathbf{v}=(-1,3,0)$.

DEFINITION OF DOT PRODUCT IN R^{n}
The dot product of $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is the

DEFINITION OF THE ANGLE BETWEEN TWO VECTORS IN R^{n}
The \qquad between two nonzero vectors in R^{n} is given by

Example 4: Find the angle between $\mathbf{u}=(2,-1,1)$ and $\mathbf{v}=(3,0,1)$.

Example 5: Consider the following vectors:
$\mathbf{u}=(-1,2) \quad \mathbf{v}=(2,-2)$
a. Find $\mathbf{u} \cdot \mathbf{v}$
b. Find $\mathbf{v} \cdot \mathbf{v}$
c. Find $\|\mathbf{u}\|^{2}$
d. Find $(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}$
e. Find $\mathbf{u} \cdot(5 \mathbf{v})$

THEOREM 4.3: PROPERTIES OF THE DOT PRODUCT

If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in R^{n}, and c is a scalar, then the following properties are true.

1. $\mathbf{u} \cdot \mathbf{v}=$ \qquad
2. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=$ \qquad
3. $c(\mathbf{u} \cdot \mathbf{v})=$ \qquad $=$ \qquad
4. $\mathbf{v} \cdot \mathbf{v}=$ \qquad
5. $\mathbf{v} \cdot \mathbf{v} \geq 0$ and $\mathbf{v} \cdot \mathbf{v}=0$ iff \qquad .

Example 6: Find $(3 \mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-3 \mathbf{v})$ given that $\mathbf{u} \cdot \mathbf{u}=8, \mathbf{u} \cdot \mathbf{v}=7$, and $\mathbf{v} \cdot \mathbf{v}=6$.

THEOREM 4.4: THE CAUCHY-SCWARZ INEQUALITY
If \mathbf{u} and \mathbf{v} are vectors in R^{n}, then
where \qquad denotes the \qquad value of $\mathbf{u} \cdot \mathbf{v}$.

Proof:

Example 7: Verify the Cauch-Schwarz Inequality for $\mathbf{u}=(-1,0)$ and $\mathbf{v}=(1,1)$.

DEFINITION OF ORTHOGONAL VECTORS
Two vectors \mathbf{u} and \mathbf{v} in R^{n} are orthogonal if

Example 7: Determine all vectors in R^{2} that are orthogonal to $\mathbf{u}=(3,1)$.

THEOREM 4.5: THE TRIANGLE INEQUALITY
If \mathbf{u} and \mathbf{v} are vectors in R^{n}, then

Proof:

THEOREM 4.6: THE PYTHAGOREAN THEOREM

If \mathbf{u} and \mathbf{v} are vectors in R^{n}, then \mathbf{u} and \mathbf{v} are orthogonal if and only if

Example 8: Verify the Pythagoren Theorem for the vectors $\mathbf{u}=(3,-2)$ and $\mathbf{v}=(4,6)$.

DEFINITION OF AN INNER PRODUCT
Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in a vector space V, and let c be any scalar. An inner product on V is a function that associates a real number $\langle\mathbf{u}, \mathbf{v}\rangle$ with each pair of vectors \mathbf{u} and \mathbf{v} and satisfies the following axioms.

1. $\langle\mathbf{u}, \mathbf{v}\rangle=$ \qquad
2. $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=$ \qquad
3. $c\langle\mathbf{u}, \mathbf{v}\rangle=$
4. $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$, and $\langle\mathbf{v}, \mathbf{v}\rangle=0$ iff \qquad

NOTE: The \qquad product is the \qquad product for \qquad .

Example 8: Show that the function $\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}+2 u_{2} v_{2}+u_{3} v_{3}$ defines an inner product on R^{3}, where, $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$.

Example 9: Show that the function $\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}-u_{2} v_{2}-u_{3} v_{3}$ does not define an inner product on R^{3}, where, $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$.

THEOREM 4.7: PROPERTIES OF INNER PRODUCTS

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in an inner product space V, and let c be any real number.

1. $\langle\mathbf{0}, \mathbf{v}\rangle=$ \qquad $=$ \qquad
2. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=$ \qquad

Proof:
3. $\langle\mathbf{u}, c \mathbf{v}\rangle=$ \qquad

DEFINITION OF LENGTH, DISTANCE, AND ANGLE

Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V.

1. The length (or \qquad) of \mathbf{u} is \qquad .
2. The distance between \mathbf{u} and \mathbf{v} is \qquad .
3. The angle between and two vectors \mathbf{u} and \mathbf{v} is given by
\qquad
4. \mathbf{u} and \mathbf{v} are orthogonal when \qquad .
\qquad , then \mathbf{u} is called a \qquad vector. Moreover, if \mathbf{v} is any nonzero vector in an
inner product space V, then the vector \qquad is a \qquad vector and is called the \qquad vector in the \qquad of \mathbf{v}.

Inner product on $C[a, b]$ is $\langle f, g\rangle=$ \qquad .

Inner product on $M_{2,2}$ is $\langle A, B\rangle=$ \qquad .

Inner product on P_{n} is $\langle p q\rangle=$ \qquad , where and \qquad .
Example 10: Consider the following inner product defined on R^{n} :
$\mathbf{u}=(0,-6), \mathbf{v}=(-1,1)$, and $\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}+2 u_{2} v_{2}$
a. Find $\langle\mathbf{u}, \mathbf{v}\rangle$
b. Find $\|\mathbf{u}\|$
c. Find $\|\mathbf{v}\|$
d. Find $d(\mathbf{u}, \mathbf{v})$

Example 11: Consider the following inner product defined:
$\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x, f(x)=-x, g(x)=x^{2}-x+2$
a. Find $\langle f, g\rangle$
b. Find $\|f\|$
c. Find $\|g\|$
d. Find $d(f, g)$

THEOREM 4.8

Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V.

Cauchy-Schwarz Inequality: \qquad
Triangle Inequality: \qquad
Pythagorean Theorem: \mathbf{u} and \mathbf{v} are orthogonal if and only if

Example 12: Verify the triangle inequality for $A=\left[\begin{array}{rr}0 & 1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{rr}1 & 1 \\ 2 & -2\end{array}\right]$, and
$\langle A, B\rangle=a_{11} b_{11}+a_{21} b_{21}+a_{12} b_{12}+a_{22} b_{22}$.

DEFINITION OF ORTHOGONAL PROJECTION
Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V, such that $\mathbf{v} \neq \mathbf{0}$. Then the orthogonal projection of \mathbf{u} onto \mathbf{v} is

THEOREM 5.9: ORTHOGONAL PROJECTION AND DISTANCE
Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V, such that $\mathbf{v} \neq \mathbf{0}$. Then

Example 13: Consider the vectors
$\mathbf{u}=(-1,-2)$ and $\mathbf{v}=(4,2)$. Use the Euclidean inner product to find the following:
a. $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$
b. $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$
c. Sketch the graph of both $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$.

4.2: ORTHONORMAL BASES: GRAM-SCHMIDT PROCESS

Learning Objectives:

1. Show that a set of vectors is orthogonal and forms an orthonormal basis, and represent a vector relative to an orthonormal basis
2. Apply the Gram-Schmidt orthonormalization process

Consider the standard basis for R^{3}, which is

This set is the standard basis because it has useful characteristics such as... The three vectors in the basis are
\qquad and they are each \qquad .

DEFINITIONS OF ORTHOGONAL AND ORTHONORMAL SETS
A set S of a vector space V is called orthogonal when every pair of vectors in S is orthogonal. If, in addition, each vector in the set is a unit vector, then S is called
\qquad . For $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, this definition has the following form.

ORTHOGONAL

ORTHONORMAL

If \qquad is a \qquad then it is an \qquad basis or an \qquad
basis, respectively.

THEOREM 4.10: ORTHOGONAL SETS ARE LINEARLY INDEPENDENT

If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthogonal set of \qquad vectors in an inner product space V, then S is linearly independent.
Proof:

THEOREM 4.10: COROLLARY

If V is an inner product space of dimension n, then any orthogonal set of n nonzero vectors is a basis for V.

Example 1: Consider the following set in R^{4}.
$\left\{\left(\frac{\sqrt{10}}{10}, 0,0, \frac{3 \sqrt{10}}{10}\right),(0,0,1,0),(0,1,0,0),\left(-\frac{3 \sqrt{10}}{10}, 0,0, \frac{\sqrt{10}}{10}\right)\right\}$
a. Determine whether the set of vectors is orthogonal.
b. If the set is orthogonal, then determine whether it is also orthonormal.
c. Determine whether the set is a basis for R^{n}.

THEOREM 4.11: COORDINATES RELATIVE TO AN ORTHONORMAL BASIS
If $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis for an inner product space V, then the coordinate representation of a vector \mathbf{w} relative to B is

Proof:

The coordinates of \qquad relative to the \qquad basis \qquad are called the
\qquad coefficients of \qquad relative to \qquad . The corresponding coordinate matrix of \qquad
relative to \qquad is

Example 2: Show that the set of vectors $\{(2,-5),(10,4)\}$ in R^{2} is orthogonal and normalize the set to produce an orthonormal set.

Example 3: Find the coordinate matrix of $\mathbf{x}=(-3,4)$ relative to the orthonormal basis $B=\left\{\left(\frac{\sqrt{5}}{5}, \frac{2 \sqrt{5}}{5}\right),\left(-\frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right)\right\}$ in R^{2}. Use the dot product as the inner product.

THEOREM 4.12: GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for an inner product V.
Let $B^{\prime}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right\}$, where \mathbf{w}_{i} is given by
$\mathbf{w}_{1}=\mathbf{v}_{1}$
$\mathbf{w}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}_{2}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}$
$\mathbf{w}_{3}=\mathbf{v}_{3}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{w}_{2}\right\rangle}{\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle} \mathbf{w}_{2}$
引
$\mathbf{w}_{n}=\mathbf{v}_{n}-\frac{\left\langle\mathbf{v}_{n}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}-\frac{\left\langle\mathbf{v}_{n}, \mathbf{w}_{2}\right\rangle}{\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle} \mathbf{w}_{2}-\cdots-\frac{\left\langle\mathbf{v}_{n}, \mathbf{w}_{n-1}\right\rangle}{\left\langle\mathbf{w}_{n-1}, \mathbf{w}_{n-1}\right\rangle} \mathbf{w}_{n-1}$
Let $\mathbf{u}_{i}=\frac{\mathbf{w}_{i}}{\left\|\mathbf{w}_{i}\right\|}$. Then the set $B^{\prime \prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ is an orthonormal basis for V. Moreover,
$\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ for $k=1,2, \ldots, n$.

Example 4: Apply the Gram-Schmidt orthonormalization process to transform the basis $B=\{(1,0,0),(1,1,1),(1,1,-1)\}$ for a subspace in R^{3} into an orthonormal basis. Use the Euclidean inner product on R^{3} and use the vectors in the order they are given.

4.3: MATHEMATICAL MODELS AND LEAST SQUARES ANALYSIS

Learning Objectives:

1. When you are done with your homework you should be able to...
2. Define the least squares problem
3. Find the orthogonal complement of a subspace and the projection of a vector onto a subspace
4. Find the four fundamental subspaces of a matrix
5. Solve a least squares problem
6. Use least squares for mathematical modeling

In this section we will study \qquad systems of linear equations and learn how to find the
\qquad of such a system.

LEAST SQUARES PROBLEM

Given an $m \times n$ matrix A and a vector \mathbf{b} in R^{m}, the \qquad problem is to
find \qquad in R^{m} such that \qquad is \qquad -

DEFINITION OF ORTHOGONAL SUBSPACES

The subspaces S_{1} and S_{2} of R^{n} are orthogonal when for all \mathbf{v}_{1} in S_{1} and \mathbf{v}_{2} in S_{2}.

Example 1: Are the following subspaces orthogonal?
$S_{1}=\operatorname{span}\left\{\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ and $S_{2}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$

DEFINITION OF ORTHOGONAL COMPLEMENT

If S is a subspace of R^{n}, then the orthogonal complement of S is the set

What's the orthogonal complement of $\{0\}$ in R^{n} ?

What's the orthogonal complement of R^{n} ?

DEFINITION OF DIRECT SUM
Let S_{1} and S_{2} be two subspaces of R^{n}. If each vector \qquad can be uniquely written as the
sum of a vector \qquad from \qquad and a vector \qquad from \qquad then \qquad is the
direct sum of \qquad and \qquad and you can write \qquad .

Example 2: Find the orthogonal complement S^{\perp}, and find the direct sum $S \oplus S^{\perp}$.
$S=\operatorname{span}\left\{\left[\begin{array}{r}0 \\ 1 \\ -1 \\ 1\end{array}\right]\right\}$

THEOREM 4.13: PROPERTIES OF ORTHOGONAL SUBSPACES
Let S be a subspace of R^{n}, Then the following properties are true.

1. \qquad
2. \qquad
3. \qquad

THEOREM 4.14: PROJECTION ONTO A SUBSPACE
If $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{t}\right\}$ is an orthonormal basis for the subspace S of R^{n}, and $\mathbf{v} \in R^{n}$, then

Example 3: Find the projection of the vector \mathbf{v} onto the subspace S.
$S=\operatorname{span}\left\{\left[\begin{array}{r}-1 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}, \mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$

THEOREM 4.15: ORTHOGONAL PROJECTION AND DISTANCE
Let S be a subspace of R^{n} and let $\mathbf{v} \in R^{n}$. Then, for all $\mathbf{u} \in S, \mathbf{u} \neq \operatorname{proj}_{S} \mathbf{v}$,

Recall that if A is an $m \times n$ matrix, then the column space of A is a \qquad of \qquad consisting of all vectors of the form \qquad , \qquad . The four fundamental subspaces of the matrix $\overline{A \text { are defined as }}$
follows.
\qquad = nullspace of A

= column space of A
Example 4: Find bases for the four fundamental subspaces of the matrix
$A=\left[\begin{array}{rrr}0 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 1\end{array}\right]$.

THEOREM 4.16: FUNDAMENTAL SUBSPACES OF A MATRIX
If A is an $m \times n$ matrix, then
\qquad and \qquad are orthogonal subspaces of \qquad .
\qquad and \qquad are orthogonal subspaces of \qquad .

SOLVING THE LEAST SQUARES PROBLEM

Recall that we are attempting to find a vector \mathbf{x} that minimizes \qquad ,
where A is an $m \times n$ matrix and \mathbf{b} is a vector in R^{m}. Let S be the column space of A : \qquad . Assume that \mathbf{b} is not in S, because otherwise the system $A \mathbf{x}=\mathbf{b}$ would be \qquad . We are looking for a
vector \qquad in \qquad that is as close as possible to \qquad . This desired vector is
the \qquad of \qquad onto \qquad . So, \qquad
and \qquad $=$ \qquad is orthogonal to \qquad . However, this implies that \qquad is in \qquad , which equals \qquad . So, \qquad is in
the \qquad of \qquad .

The solution of the least squares problem comes down to solving the \qquad linear system of equations
\qquad . These equations are called the \qquad equations of the least squares
problem \qquad .

Example 5: Find the least squares solution of the system $A \mathbf{x}=\mathbf{b}$.
$A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 2\end{array}\right]$

Example 6: The table shows the numbers of doctoral degrees y (in thousands) awarded in the United States from 2005 through 2008. Find the least squares regression line for the data. Then use the model to predict the number of degrees awarded in 2015. Let t represent the year, with $t=5$ corresponding to 2005. (Source: U.S. National Center for Education Statistics)

| Year
 Doctoral Degrees, \boldsymbol{y}
 $\mathbf{2 0 0 5} 52.6$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ |
| :--- | :--- | :--- | :--- | :--- |
| | | 60.1 | 63.7 |

4.4: EIGENVALUES AND EIGENVECTORS, AND DIAGONALIZING MATRICES

Learning Objectives:

1. Verify eigenvalues and corresponding eigenvectors
2. Find eigenvectors and corresponding eigenspaces
3. Use the characteristic equation to find eigenvalues and eigenvectors, and find the eigenvalues and eigenvectors of a triangular matrix
4. Find the eigenvalues and eigenvectors of a linear transformation

THE EIGENVALUE PROBLEM

One of the most important problems in linear algebra is the eigenvalue problem. When A is an $n \times n$, do nonzero vectors \mathbf{x} in R^{n} exist such that $A \mathbf{x}$ is a \qquad multiple of \mathbf{x} ? The scalar, denoted by \qquad
\qquad), is called an \qquad of the matrix A, and the nonzero vector \mathbf{x} is called an
\qquad of A corresponding to λ.

DEFINITIONS OF EIGENVALUE AND EIGENVECTOR
Let A be an $n \times n$ matrix. The scalar \qquad is called an \qquad of A when there is a vector \mathbf{x} such that \qquad . The vector \mathbf{x} is called an \qquad of A
corresponding to λ.
*Note that an eigenvector cannot be \qquad . Why not?

Example 1: Determine whether \mathbf{x} is an eigenvector of A.
$A=\left[\begin{array}{rr}-3 & 10 \\ 5 & 2\end{array}\right]$
a. $\quad \mathbf{x}=(-8,4)$
b. $\quad \mathbf{x}=(5,-3)$

THEOREM 4.17: EIGENVECTORS OF λ FORM A SUBSPACE
If A is an $n \times n$ matrix with an eigenvalue λ, then the set of all eigenvectors of λ, together with the zero vector
is a subspace of R^{n}. This subspace is called the \qquad of λ.

Proof:

THEOREM 4.18: EIGENVALUES AND EIGENVECTORS OF A MATRIX

Let A be an $n \times n$ matrix.

1. An eigenvalue of A is a scalar λ such that \qquad .
2. The eigenvectors of A corresponding to λ are the \qquad solutions of
\qquad .

* The equation \qquad is called the \qquad
\qquad of
A. When expanded to polynomial form, the polynomial is called the \qquad of A. This definition tells you that the \qquad of an $n \times n$ matrix
A correspond to the \qquad of the characteristic polynomial of A.

Example 2: Find (a) the characteristic equation and (b) the eigenvalues (and corresponding eigenvectors) of the matrix.
$A=\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0\end{array}\right]$
\qquad .

Example 3: Find the eigenvalues of the triangular matrix.
$\left[\begin{array}{crr}-5 & 0 & 0 \\ 3 & 7 & 0 \\ 4 & -2 & 3\end{array}\right]$

EIGENVALUES AND EIGENVECTORS OF LINEAR TRANSFORMATIONS

A number λ is called an \qquad of a linear transformation \qquad when there is a
\qquad vector \qquad such that \qquad . The vector \mathbf{x} is called an \qquad
of T corresponding to λ, and the set of all eigenvectors of λ (with the zero vector) is called the
\qquad of λ.

Example 4: Consider the linear transformation $T: R^{n} \rightarrow R^{n}$ whose matrix A relative to the standard base is given. Find (a) the eigenvalues of A, (b) a basis for each of the corresponding eigenspaces, and (c) the matrix A^{\prime} for T relative to the basis B^{\prime}, where B^{\prime} is made up of the basis vectors found in part b).

$$
A=\left[\begin{array}{cc}
-6 & 2 \\
3 & -1
\end{array}\right]
$$

4.5: DIAGONALIZATION

Learning Objectives:

1. Find the eigenvectors of similar matrices, determine whether a matrix A is diagonalizable, and find a matrix P such that $P^{-1} A P$ is diagonal
2. Find, for a linear transformation $T: V \rightarrow V$, a basis B for V such that the matrix for T relative to B is diagonal

DEFINITION OF A DIAGONALIZABLE MATRIX
An $n \times n$ matrix A is diagonalizable when A is similar to a diagonal matrix. That is, A is diagonalizable when there exists an invertible matrix \qquad such that \qquad is a diagonal matrix.

THEOREM 4.20: SIMILAR MATRICES HAVE THE SAME EIGENVALUES

If A and B are similar $n \times n$ matrices, then the have the same \qquad .

Proof:

Example 1: (a) verify that A is diagonalizable by computing $P^{-1} A P$, and (b) use the result of part (a) and Theorem 4.20 to find the eigenvalues of A.

$$
A=\left[\begin{array}{rr}
1 & 3 \\
-1 & 5
\end{array}\right], P=\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]
$$

THEOREM 4.21: CONDITION FOR DIAGONALIZATION
An $n \times n$ matrix A is diagonalizable if and only if it has n \qquad eigenvectors.

Proof:

Example 2: For the matrix A, find, if possible, a nonsingular matrix P such that $P^{-1} A P$ is diagonal. Verify $P^{-1} A P$ is a diagonal matrix with the eigenvalues on the main diagonal.
$A=\left[\begin{array}{lll}4 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 2 & 2\end{array}\right]$

STEPS FOR DIAGONALIZING AN $n \times n$ SQUARE MATRIX

Let A be an $n \times n$ matrix.

1. Find n linearly independent eigenvectors \qquad for A (if possible) with corresponding eigenvalues \qquad . If n linearly independent eigenvectors do not exist, then A is not diagonalizable.
2. Let P be the $n \times n$ matrix whose columns consist of these eigenvectors. That is,
\qquad . The diagonal matrix \qquad will have the eigenvalues
\qquad on its main \qquad (and \qquad elsewhere). Note that the order of the eigenvectors used to form P will determine the order in which the eigenvalues appear on the main \qquad of \qquad .

THEOREM 4.22: SUFFICIENT CONDITION FOR DIAGONALIZATION

If an $n \times n$ matrix A has \qquad eigenvalues, then the corresponding eigenvectors are and A is \qquad .

Proof:

Example 3: Find the eigenvalues of the matrix and determine whether there is a sufficient number to guarantee that the matrix is diagonalizable.
$\left[\begin{array}{ll}2 & 0 \\ 5 & 2\end{array}\right]$

Example 4: Find a basis B for the domain of T such that the matrix for T relative to B is diagonal. $T: R^{3} \rightarrow R^{3}: T(x, y, z)=(-2 x+2 y-3 z, 2 x+y-6 z,-x-2 y)$

4.5: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION Learning Objectives:

1. Recognize, and apply properties of, symmetric matrices
2. Recognize, and apply properties of, orthogonal matrices
3. Find an orthogonal matrix P that orthogonally diagonalizes a symmetric matrix A

SYMMETRIC MATRICES

Symmetric matrices arise more often in \qquad than any other major class of matrices.

The theory depends on both \qquad and \qquad . For most matrices, you need to go through most of the diagonalization \qquad to ascertain whether a matrix is \qquad . We learned about one exception, a \qquad matrix,
which has \qquad entries on the main \qquad . Another type of matrix which is guaranteed to be \qquad is a \qquad matrix.

DEFINITION OF SYMMETRIC MATRIX

A square matrix A is \qquad when it is equal to its \qquad $:$ \qquad

Example 1: Determine which of the matrices below are symmetric.
$A=\left[\begin{array}{rr}-2 & 5 \\ 5 & 1\end{array}\right], B=\left[\begin{array}{rrr}6 & 5 & 4 \\ 5 & 1 & 0 \\ 4 & 0 & -1\end{array}\right], C=\left[\begin{array}{lll}3 & 2 & 1 \\ 1 & 2 & 3\end{array}\right], D=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 7 & 1 & 0 \\ 3 & 1 & 7 & 2 \\ 4 & 0 & 2 & 5\end{array}\right]$

Example 2: Using the diagonalization process, determine if A is diagonalizable. If so, diagonalize the matrix A.
$A=\left[\begin{array}{rr}6 & -1 \\ -1 & 5\end{array}\right]$

THEOREM 4.23: PROPERTIES OF SYMMETRIC MATRICES

If A is an $n \times n$ symmetric matrix, then the following properties are true.

1. A is \qquad _.
2. All \qquad of A are \qquad .
3. If λ is an \qquad of A with multiplicity \qquad , then ___ has \qquad linearly \qquad eigenvectors. That is, the of λ has dimension
Proof of Property 1 (for a 2×2 symmetric matrix):

Example 3: Prove that the symmetric matrix is diagonalizable.
$A=\left[\begin{array}{lll}a & a & a \\ a & a & a \\ a & a & a\end{array}\right]$

Example 4: Find the eigenvalues of the symmetric matrix. For each eigenvalue, find the dimension of the corresponding eigenspace.
$A=\left[\begin{array}{rrr}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$

DEFINITION OF AN ORTHOGONAL MATRIX
A square matrix P is__ when it is__ and when

THEOREM 4.24: PROPERTY OF ORTHOGONAL MATRICES

An $n \times n$ matrix P is orthogonal if and only if its \qquad vectors form an set.

Example 5: Determine whether the matrix is orthogonal. If the matrix is orthogonal, then show that the column vectors of the matrix form an orthonormal set.
$A=\left[\begin{array}{rrr}-\frac{4}{5} & 0 & \frac{3}{5} \\ 0 & 1 & 0 \\ \frac{3}{5} & 0 & \frac{4}{5}\end{array}\right]$

Let A be an $n \times n$ symmetric matrix. If λ_{1} and λ_{2} are \qquad eigenvalues of A, then their corresponding \qquad \mathbf{x}_{1} and \mathbf{x}_{2} are \qquad .

THEOREM 4.26: FUNDAMENTAL THEOREM OF SYMMETRIC MATRICES

Let A be an $n \times n$ matrix. Then A is \qquad and
has \qquad eigenvalues if and only if A is \qquad .

Proof:

STEPS FOR DIAGONALIZING A SYMMETRIC MATRIX

Let A be an $n \times n$ symmetric matrix.

1. Find all \qquad of A and determine the \qquad of each.
2. For \qquad eigenvalue of multiplicity \qquad find a \qquad eigenvector. That is, find any
\qquad and then \qquad it.
3. For \qquad eigenvalue of multiplicity \qquad find a set of \qquad
\qquad eigenvectors. If this set is not \qquad apply the
\qquad
\qquad process.
4. The results of steps 2 and 3 produce an \qquad set of \qquad eigenvectors. Use these eigenvectors to form the \qquad of \qquad . The matrix \qquad will be . The main entries of are the of .

Example 5: Find a matrix P such that $P^{T} A P$ orthogonally diagonalizes A. Verify that $P^{T} A P$ gives the proper diagonal form.
$A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

Example 6: Prove that if a symmetric matrix A has only one eigenvalue λ, then $A=\lambda I$.

4.6: APPLICATIONS OF EIGENVALUES AND EIGENVECTORS

Learning Objectives:

1. Find the matrix of a quadratic form and use the Principal Axes Theorem to perform a rotation of axes for a conic and a quadric

QUADRATIC FORMS

Every conic section in the $x y$-plane can be written as:

If the equation of the conic has no $x y$-term (\qquad), then the axes of the graphs are parallel to the coordinate axes. For second-degree equations that have an xy-term, it is helpful to first perform a \ldots of axes that eliminates the $x y$-term. The required rotation angle is $\cot 2 \theta=\frac{a-c}{b}$. With this rotation, the standard basis for R^{2}, \qquad is rotated to form the new basis

Example 1: Find the coordinates of a point (x, y) in R^{2} relative to the basis $B^{\prime}=\{(\cos \theta, \sin \theta),(-\sin \theta, \cos \theta)\}$.

ROTATION OF AXES

The general second-degree equation $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ can be written in the form $a^{\prime}\left(x^{\prime}\right)^{2}+c^{\prime}\left(y^{\prime}\right)^{2}+d^{\prime} x^{\prime}+e^{\prime} y^{\prime}+f^{\prime}=0$ by rotating the coordinate axes counterclockwise through the angle θ, where θ is defined by $\cot 2 \theta=\frac{a-c}{b}$. The coefficients of the new equation are obtained from the substitutions $x=x^{\prime} \cos \theta-y^{\prime} \sin \theta$ and $y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$.

Example 2: Perform a rotation of axes to eliminate the $x y$-terms in $5 x^{2}-6 x y+5 y^{2}+14 \sqrt{2} x-2 \sqrt{2} y+18=0$. Sketch the graph of the resulting equation.

\qquad can be used to solve the rotation of axes
problem. It turns out that the coefficients a^{\prime} and c^{\prime} are eigenvalues of the matrix

The expression \qquad is called the \qquad form associated with the quadratic equation and the matrix \qquad is called the \qquad of the \qquad form. Note that \qquad is \qquad . Moreover, \qquad will be \qquad if and only if its corresponding quadratic form has no \qquad term.

Example 3: Find the matrix of quadratic form associated with each quadratic equation.
a. $x^{2}+4 y^{2}+4=0$
b. $5 x^{2}-6 x y+5 y^{2}+14 \sqrt{2} x-2 \sqrt{2} y+18=0$

Now, let's check out how to use the matrix of quadratic form to perform a rotation of axes.
Let $X=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then the quadratic expression $a x^{2}+b x y+c y^{2}+d x+e y+f$ can be written in matrix form as follows:

If \qquad , then no \qquad is necessary. But if \qquad then because \qquad is symmetric, you may conclude that there exists an \qquad matrix \qquad such that \qquad is diagonal. So, if you let
then it follows that \qquad , and

The choice of \qquad must be made with care. Since \qquad is orthogonal, its determinant will be \qquad . If P is chosen so that $|P|=1$, then P will be of the form
where θ gives the angle of rotation of the conic measured from the \qquad x-axis to the positive x^{\prime}-axis.

PRINCIPAL AXES THEOREM

For a conic whose equation is $a x^{2}+b x y+c y^{2}+d x+e y+f=0$, the rotation given by \qquad eliminates the $x y$-term when P is an orthogonal matrix, with $|P|=1$, that diagonalizes A. That is
where λ_{1} and λ_{2} are eigenvalues of A. The equation of the rotated conic is given by

Example 4: Use the Principal Axes Theorem to perform a rotation of axes to eliminate the $x y$-term in the quadratic equation. Identify the resulting rotated conic and give its equation in the new coordinate system.
$5 x^{2}-6 x y+5 y^{2}+14 \sqrt{2} x-2 \sqrt{2} y+18=0$

[^0]: Point: $(3,-1,1)$
 Color: \square 『 Size: 7
 Eq: $\mathrm{z}=1$

 - Eq: $-y+z=2$
 (Eq: $x+y+z=3$

